

 1

Minatek® Flat File Converter
This .NET class offers a simple way to convert fixed-text flat files, such as report dumps from legacy

systems, into useable data. By either manually creating a definition file or using the Definition Builder

you can convert files to a variety of formats.

The following document will discuss how to use the definition builder and the class inside your

application.

Definition Builder
Use the Definition Builder to create the XML definition files for fixed-width data. These next few

screenshots will show the process of creating such a file.

After starting the application, click File | New to create a new definition. First, you must select the flat

file to work with. This will load the data in the design screen so it is easier to defi ne it. Use the

SampleDataFixed file found in package containing the application download for an example.

On the right, you will now see your raw data. At the bottom left you must now define the start and end

record text so that the system will know what differentiates records. Double-click on the

 2

RecordStartText, and then highlight the portion of text that signifies the start of a record. Ensure it is

unique, such as Account in this sample.

Once you have selected the text, click the paperclip to Set the value. Repeat to complete the

RecordEndText, which we’ll use the colon in the line after State. Now, press the padlock icon on the

toolbar to lock the set. This will define the data and display just one record of the data so that you can

define the fields.

Now, click the third icon on the toolbar, the paper with a plus sign (Add Field). Specify the dataset name

you wish to give this field. Keep in mind this is how it will be called in the dataset or resulting data from

using this application.

 3

To specify what constitutes the account number, double-click one of the items in the bottom-left pane,

highlight the region of text that has the account number, remembering to including leading spaces to

where the record may grow, and then click the paperclip to set the Line, Position Start, and Position End

automatically.

If a field runs from a certain start position to the end of the line, just place the cursor at the start of the

data and click Set Value—this is handy for fields with open-ended values that terminate at end-of-line.

Just repeat for each field you wish to gather.

 4

As you can see, all of the fields have been defined. The definition is ready to be saved and previewed. By

clicking the last icon on the toolbar, View Dataset, you are able to view your data file against the

definition in a database like manner.

 5

Open the sample project in Visual Studio to see a Visual Basic .Net application use the sample definition

file and data to return a dataset for the application’s use.

 6

Definition Files
A definition file stores details about the source data, such as type, and column name as location details.

The functions available in the class allow referencing a definition file on the hard drive, or passing in the

file contents so that another service or an embedded resource may be used.

Below are two examples: one for fixed-width, the other for delimited (CSV).

Fixed-Width Definition File Sample

As seen in the previous section, fixed-width definition files may be created by the Definition Builder.

Typically a fixed-width data file is generated by a legacy system from a save-to-file report function, and

while they are easy to read by a human they are more difficult to use in applications.

The following is a sample data file of containing client information:

CLIENT DATA RUN DATE 03/22/07 PAGE 1

Account #: 934204

Client Name: JOHN T DOE

Phone #: 902-555-1212

Address 1: 150 Main St

Address 2:

City: HALIFAX

State: NS Zip: B0B 1B0

:

:

Account #: 390775

Client Name: MELISSA J SMITH

Phone #: 902-555-2424

Address 1: 360 Front St

Address 2:

City: HALIFAX

State: NS Zip: B0B 1B0

 7

Next is the definition file that contains the values needed to process these records:

<?xml version="1.0" encoding="utf-8" ?>

<definition version="1.0">

 <recordstarttext>Account</recordstarttext>

 <recordendtext>:</recordendtext>

 <datatype>TextFixed</datatype>

 <fields>

 <field name="account" line="1" posstart="25" posend="34" format="0"/>

 <field name="firstname" line="2" posstart="25" posend="39" format="0"/>

 <field name="lastname" line="2" posstart="41" posend="0" format="0"/>

 <field name="address1" line="4" posstart="25" posend="0" format="0"/>

 <field name="address2" line="5" posstart="25" posend="0" format="0"/>

 <field name="city" line="6" posstart="25" posend="0" format="0"/>

 <field name="state" line="7" posstart="25" posend="35" format="0"/>

 <field name="zipcode" line="7" posstart="41" posend="0" format="0"/>

 <field name="phone" line="3" posstart="27" posend="0" format="0"/>

 </fields>

</definition>

As you can see in the sample data, each record starts with the account number and ends with a colon;

therefore, the recordstarttext and recordendtext contain “Account” and “:”, respectively.

Fields are very straightforward. The name is how the resulting dataset or XML file should call this

column. Line numbers are one-based, with one being the line the value found in the recordstarttext

element is.

In this example, the account number is found on line 1, starting at character position 25 on that line and

ending at character position 34 on that line.

A variation on that is when the end position may vary. Just as the address fields you may simply specify a

zero for the posend attribute. This will start at posstart and read to the end of the line.

 8

Delimited Definition File Sample

Delimited text files may sometimes be referred to as comma-separated or CSV files. Basically any file

with one character separating fields or columns and each line being a new row may be processed with

this method.

The following sample data contains a ZIP-code with its city and state:

"New York City","NY",10001

"Beverly Hills","CA",90210

To process this file, it is defined in the following manner:

<?xml version="1.0" encoding="utf-8" ?>

<definition version="1.0">

 <datatype>Delimited</datatype>

 <delimiter>,</delimiter>

 <textqualifier>"</textqualifier>

 <fields>

 <field name="zipcode" position="3" format="0"/>

 <field name="statecode" position="2" format="0"/>

 <field name="cityname" position="1" format="0"/>

 </fields>

</definition>

Since the datatype is “Delimited” the attributes needed are different. Since the sample data is a comma-

separated values file, meaning a comma separates the columns, the delimiter element contains “,”. The

textqualifier element ensures that text inside the qualifier are taken as a whole, and not as a separate

record.

An example of this could be a record containing a name in the last name comma first name format:

 “Doe, John”, “Washington”, “DC”

Without the quotation-mark text-qualifier, “Doe” and “John” would be considered separate columns,

possibly mixing up the data.

 9

minatek.flatfileconvert
There are several functions available to manipulate data. Some allow the path of the data and definition

files to be passed in, others allow a text stream be passed in. One may output to a file, another return

the data. This allows one to either compile in definitions and data into an application or open files, or

any combination.

Ultimately, this is XML based; however, a data.dataset object may be returned in some cases as well.

ConvertToFile – Outputs a formatted XML file based on an XML stylesheet, or XSLT, file.

ConvertToExcelXMLSpreadsheet – Outputs to an Excel XML Spreadsheet based on an XSLT file.

 ProcessInstructions is a string array containing processing instructions found in the header of an

XML file. Each instruction requires two sets of data: the name and the value. This makes this

array have a bound of two for each instruction.

ConvertToXML – Returns an XML Document (System.Xml.XmlDocument)

ConvertToDataset – Returns a dataset containing records (System.Data.Dataset)

 10

Support and Suggestions
This product has limited support. You may submit support requests and suggestions at the product

website. See the terms-of-use and license agreement file included in the folder.

http://www.minateksolutions.com/tools/flatfileconvert

http://www.minateksolutions.com/tools/flatfileconvert

