DesagnWorks™ 4.0

Macintosh® \erson
Sript Language Reference

May 23, 1997

Copyright ©1997 by Capilano Computing Systems Ltd.
All rights reserved.

IMPORTANT NOTICE

Capilano Computing Systems Ltd. (“Capilano”) retains al ownership rights to the
DesignWorks™ program and all other software and documentation making up the
DesignWorks package. Use of the DesignWorks software is governed by the license
agreement accompanying the original media.

Your right to copy the DesignWorks software and this publication is limited by copyright
law and your end user license agreement. Making copies, adaptations or compilation
works (except copies for archival purposes or as an essential step in the utilization of the
software) without prior written authorization of Capilano, is prohibited by law and
constitutes a punishable violation of the law.

Capilano provides this publication “asis’ without warranty of any kind, either express or
implied, including but not limited to the implied warranties or conditions of
merchantability or fitness for a particular purpose. In no event shall Capilano be liable for
any loss of profits, loss of business, loss of use of data, interruption of business, or for
indirect, special, incidental or consequential damages of any kind, even if Capilano has
been advised of the possibility of such damages arising form any defect or error in this
publication or in the DesignWorks software.

Capilano reserves the right to update this publication from time to time without notice.
Some of the information in the publication refers to characteristics of third party products
over which Capilano has no control. Thisinformation is provided for the convenience of
DesignWorks users only and no warranty is made as to its correctness or timeliness.

Copyright ©1997 All rights reserved.

DesignWorks and L ogicWorks are trademarks of Capilano Computing Systems Ltd. Other
trademarks used in this publication are property of their respective owners.

Printed in Canada.

Capilano can be contacted at:
Capilano Computing
360 Edworthy Way, Unit 206

New Westminster, B.C., V3L 5G2
Canada

phone 604-522-6200
fax 604-522-3972
email info@capilano.com

WWW http://www.capilano.com

Part |I—Script Language Reference 1

Script Language Changes in DesignWorks 4.0. 1
Overview of New Script Features. 1
Compatibility with DesignWorks 3.x Report Forms 2

Command Language Introduction. 3
Basic Script Structure 3
DesignWorksObject Typeso i 6
DefinitionCommands. 8

Command Language Concepts 9
Current Designor Current Object., 10
DAl TYPES .« ottt 11
BloCKS . ..o 12
Command Arguments.t 12
Control and Escape Characters.ooviiii .. 13
Script Variables. 14
Attribute FieldReferences o 15

Controlling Report Page Layout 17
Setting Page Heightand Width. 17
DefiningaPageHeader 18
Setting Column Alignment i 19
DefiningaVaueBreak. i 19

Date and Time References 20
Raw Dateand TimeFormat, 20
Date and Time Formatting Commands. 21

Sortingand Merging oo 21
The$SORT Commandooi it 21
EnablingMerging 24

Implementing Mark as OK in Error Checking Scripts.

26
How the Mark as OK FunctionWorks. 27
Error BitFunctions. i 27
How the Mark asOK VaueisStored. 28

Reporting Power and Ground Nets 28
Specifying Signal Sources 28

Creating Design-Specific Signal SourceFields 29

Script Hierarchy Issues 31

Typesof Hierarchical Netlists. 31
The $HIERARCHY Commandccovii.... 32
Restricting Reporting of Internal Circuits. 33
Listing Format for Internal Circuits 33
Depth Orderingin PureNetlists 34
Instance vs. Definition vs. Hierarchicall Names 35
Power and Ground Connectionsin Hierarchy 36
File Inputand Output 36
FileNamesandPaths 36
Platform Compatibility Issues. 38
Typesof QUEPULo e 39
TextFilelnput. 41
Regular Expressions 41
The$REGEXPCommandc.coiviiiinnnnnnann. 42
Regular EXpression SyntaXovvviiii i 42
MatchVariables 44
Differences From Unix Regular Expressions. 45
Regular ExpressonExamples 45
Script Examples 46
BasicNetlissFormats 47
BasicBillsof Materials. 50
Exporting to Spreadsheets and Word Processors 51
Error CheckingExamples. i 53
Industry Netlist Formats.t 56
Part II—Script Keyword Reference 63
SALERTLUSALERT2 e 65
SALIGNCOLSON/$ALIGNCOLSOFF.t 65
BAND .. 66
SASSIGNINSTNAMES. s 66
SASSIGNNAMES 67
SATTRNUM. ... e 69
SAUTONUMBER e 69
SBLANKREPLACE. e 70
BBREAK 70

FBUSNAME. . . 72

$BUSNAMEON/$BUSNAMEOFF.ot 73
FBUSPINCLOSE e 74
SBUSPINNAME. e 74
SCALLTOOL . .o 75
SCHANGECOUNT ... e 76
SCHARMAP. . . 76
BCHECK . . 77
SCHECKSUM .. e 78
SCHILDSIGNAME 78
SCIRCUITNAME. . . .o e 79
SCLEARERRORBITo 80
SCLEARERRORS 80
$CLOSECIRCUIT/$CLOSEDESIGN 81
SCLOSEREPORT. . . .ot 81
SCLOSETRANSCRIPT . ..ot 82
BCOL . .t 83
$COMBDEVSON/$COMBDEVSOFFt 84
$COMBPINSON/$COMBPINSOFF 84
$COMBSIGSON/$COMBSIGSOFFo 85
SCONTEND . . . e 85
$CONTREPEATON/$CONTREPEATOFF 86
BCONTSTART . . 86
BCOUNT . . 87
BCOUNTINST .o 87
SCOUNTVALUES. . .. e 88
$CREATEFOLDER/$CREATEDIRECTORY 89
SCREATEREPORT e 90
SCREATETRANSCRIPT. . ..o 91
BDATE . . 92
$DATECREATED/$DATEMODIFIED 93
FDEFINEATTR .o e 93

SDEFINECIRCUIT ..o 97

SDESIGNNAME .. .o oot e 97
SDESIGNPATH .« .ot eeeeeeeeeeee 98
$DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE. 99
SDEVCOUNT. . oottt e 101
SDEVHIERNAME . . o\t 102
BDEVICES . . . oo et 103
SDEVINSTNAME . . oottt 105
SDEVLOC ..ot e 105
SDEVNAME. . . oot 106
SDEVPINFORMAT . .o oottt 107
SDEVPINSEQUENCE.o oo e 108
SDEVSEQ. .. et 109
SDEVTOKEN. « oottt 110
SDIRECTORY .« .ottt 110
SDWVERSION. « . ..ttt 110
BELSE . . ettt e 110
SEND &t 111
SENDHEADERo ovoee e 111
SENDIF. . ot e 111
=0 J 111
SERRORBITOFF . . .ottt 112
SERRORBITON oo e et et 112
SFILECREATOR . . .ottt e e 113
SFILENAME . .ottt oo 113
SFILEEXISTS. . oo v ettt 113
SFILESUFFIX © oot 114
BFIND . . ettt e 114
SFOLDER. . . . ettt 116
SFULLPATH .« oottt 117
BOE . oo 117
BORID. . . ettt 118

FHEADER 119

BHEX 119
SHIERARCHY 120
$SHIERNAMESEPARATORo 121
3 121
BIFPORT . . o 122
BINCLUDE. e 122
$INCLUDEPORTSON/$INCLUDEPORTSOFF 125
BINLINE. ..o 126
SINTERNAL. . ..o e 127
BISPORT . . 127
BISUNCONNPIN . ..o 128
SITEMSEPARATORo e 128
BLE . 129
SLINESUSED. 129
SLINETERMINATOR. 130
SLINEWIDTH ..o e 131
BT e 132
BV AP . 132
SMAXITEMSPERLINE.o 134
IMERGE. 135
BMIN. 136
BMINUS . . 136
BNE . . 137
SNEWLINE . ..o 137
INEWPAGE. 138
BNONBLANK .. 139
BNOT . 139
BNOTES. . . 140
BNULL ..o 140
SNULLSIGSON/SNULLSIGSOFF 141
BNUMINPS. . . 141

SONEPINSON/$SONEPINSOFF. . . .o oo 142
SOPENDESIGNottt 142
BOR. . e et 143
BPAGE .ot 143
SPAGELENGTH .. .ot eeeeeeeeeeee 144
SPARENTPIN. . oo oot 144
SPINCOUNT oo 145
BPINDIR oot e e e 145
SPINFORMAT . . oottt 146
SPINNAME .. oottt 146
SPINNUM. . . oot e 146
BPINS oot 147
BPINSEQ. . . . oo e 149
SPINSIGSOURCE . . .o e et 149
BPINTYPE . oottt 151
SPINTYPEFORMAT . o e ottt 151
BPLUS. oottt 153
SPLACETEXTBLOCK ..ottt 153
SPORTNAME. .+« oo 154
SPRIMNAME . .+ .\ ottt 155
SPROGRESS . ..o\ttt e e 155
20 U] 156
BREGEXP. . . oottt 157
$REPEATITEMON/$REPEATITEMOFF.\ 158
$REPORTON/$SREPORTOFFo ot 158
BROWS. .. et 159
$SAMEPINCOUNT . . oo oot e 159
BSELECT .. ettt 160
SSELECTED. . et eeeee e e e e 160
SSETATTR. . oo e e 161
$SETERRORBIT . . . oo et 162

SSETSIGWIDTH . .o 162

BOETVAR. . 163

BSIGCOUNT .. 164
SSIGHIERNAME. 165
SSIGINSTNAME 166
BSIGLOC . .o 166
BSIGNALFORMAT . . . 167
BSIGNALS . .. 167
SSIGNAME . .. 169
SSIGPINFORMAT . . oo 169
BSIGSEQ. . o 170
SSIGSOURCE 171
BSIGTOKEN. . .. 172
BSINGLE ..o 173
BSORT . 174
BOPACE . . 177
BSY SPIN. . 177
SSYSTEMOPEN . ..o 178
BT A . 179
$TABFIELDSON/$TABFIELDSOFF. 179
STABLE . .. 180
STEXTLINE. .. o e 182
BTIME. .. 183
$TIMECREATED/$TIMEMODIFIED 184
STYPENAME. 185
SUNCONNPINSOFF/$UNCONNPINSON. 185
SUNNAMEDDEVS. ... e 186
SUNNAMEDSIGS. . .. e 186
SUNSELECTEDPINS e 187
SUNUSEDUNITS. . .o 188
BUSECOUNT . .. e 188
BUSERNUM 188
BVERIFY . 189

SWRITETRANSCRIPTo 189

This manual provides an overview of the script language and then pro-
vides reference information on specific Scripter features and applications.
Part I1—Script Keyword Reference provides detailed information on
individual Scripter commands. If you are new to writing DesignWorks
scripts, you may wish to start by looking at the examplesin “ Script Exam-
ples’ on page 46.

A knowledge of the material in this chapter is not necessary in order to
use the scripts provided with DesignWorks. See the Chapter entitled
“Report Generation and Scripting” in the DesignWorks 4.0 User’s Guide
for more information on general operation of the Scripter from auser’s
point of view.

Script Language Changes in DesignWorks 4.0

The report script language that has evolved since the earliest versions of
DesignWorks has be greatly enhanced and generalized in 4.0. One of the
highest prioritiesin this version was to maintain compatibility with exist-
ing report forms, so there should not be major compatibility problems,
however some issues that you may want to be aware of are discussed in
“Compatibility with DesignWorks 3.x Report Forms” on page 2.

Overview of New Script Features

Among the many new script language features are the following:

B The interpretation of command keywords has been greatly
generalized so that any keyword can be used amost anywhere it
makes sense. For example, $DATE and $TIME can appear as part of a
pin format, or $SDESIGNNAME can be used in generating a device
attribute value.

B You can now generate a “break” in areport when avalue in a sorted
field changes. This can be used to generate reports where a page break

Script Language Changes in Design\Works 4.0

isinserted before each new type of part, for example.

B Reports can be directly generated with line-terminator characters
appropriate for a different target system, e.g. generating DOS-
compatible text files from a Macintosh.

B Unix-style regular expressions have been implemented. This provides
a powerful capability to check the format of attributes and other text
data and to extract values from complex fields.

B Attribute values can be calculated and set on any design object using
any available information.

m Various conditional operations are implemented, allowing the report
format to depend on device types or any other data values.

B A script can open and read any other line-oriented text file and extract
values for use in updating the design. This can be used in conjunction
with the regular expression features to implement a number of simple
filetrandation or back-annotation capabilities.

m Arbitrary, user-created variables and simple arithmetic operations can
be used to accumulate data values in complex ways.

B You can now generate a secondary text output file, referred to as a
“transcript” which can contain any arbitrary information. This is
intended for use as an error file or log file, allowing you to store a
trace of modifications made by a script or errors detected during the
generation of areport.

B A script can prompt the user for information to be used in generating
areport or setting data values in the design.

B Numerous new keywords have been added to extract and set various
kinds of design data and to control the operation of the script.

Compatibility with DesignWorks 3.x Report
Forms

In 95% of cases, existing report forms should produce identical results
using the new Scripter tool. The only areas of incompatibility will be:

® Many new keywords have been defined in the new version. If an
existing script used an item of the form “$XXX” on the assumption
that an unrecognized keyword would be passed through to the output,
this may cause trouble in the new version. This can be fixed by
placing a backslash “\” character in front of the dollar sign. Thiswill

Command Language Introduction

prevent it from being interpreted as a command.

B Some existing keywords can now be followed by arguments in
parentheses. For example $DATE and $TIME can now take an
optional format specification. If an existing report form has a
keyword followed by an opening parenthesis, this may be interpreted
differently in the new version. The solution is the same as the
previous item, i.e. place a back-slash escape character in front of the
parenthesis.

B Some bugs and inconsistencies in the 3.x Report module were
corrected in this version, which may affect generated output. Thisis
mostly in the area of adding pins to a netlist from attribute fields in
the device and the handling of duplicate pins. In the event that a
specific type of report relied on this behaviour, it will be necessary to
change to report form to produce the desired results.

Command Language Introduction

The script language implement by the Scripter tool was devel oped origi-
nally as aflexible way of specifying netlist formats; an alternative to the
hard-coded netlists that are provided by most schematic packages. How-
ever, as enterprising users pushed the limits of the original language, we
added more features to support more complex report formats, error check-
ing, back annotation and other applications. The script language is till
primarily oriented around the concept of generating atext file from
design data. However, the new regular expression and file 1/O features
added in this version make many other applications possible.

Basic Script Structure

A script fileis simply atext file containing any number of lines of text
with optional commands and comments embedded in them. The default
mode of operation for the Scripter isto read the input (script) file oneline
a atime, scanning for commands. If no commands are detected, the line
issimply written directly to the output file. In fact, the Scripter will accept
any text fileasinput. If it doesn't recognize any commands, the entirefile
will be written verbatim to the output without modification (except, possi-
bly, for achangein line terminators - more on this topic later).

Command Language Introduction

When reading the script file, the program scans for any commands, vari-
ables or comments. If any of them are found, new data may be generated
and substituted at that location in the output, or some other action may be

taken.

B COMMANDS—Commands start with the “$” symbol and are in
upper case letters. Commands are used to control the format of the
report and perform various actions. Some of the commands need
arguments to set certain values (e.g. the number of characters on a
line). Any arguments are enclosed in parentheses following the
command keyword.

» See more information on command argument format in “Command Ar-
guments” on page 12

NOTE:

If the desired output file format requires that a word starting with a

“$” be placed in the script, it is best to precede the “$”” with the escape
character “\” (backslash) to ensure that it will not be accidentally
interpreted as a command.

Commands fall into these general sub-groups:

*

Definition commands are those which set parameters for how
data is generated but do not themselves generate any text in the
output file. An example is the $SIGPINFORMAT command,
which specifies how pinswill be displayed in asigna list.

Action commands cause some action to be taken but don't
generate any text data that ends up in the output file. For example
the $SORT command sorts a device or signal list.

Function commands perform arithmetic, logical and various
conversion operations on data supplied as arguments. For
example $ADD will add two numbers and return the result.

Listing commands are those which cause lists of items to be
directed to the output file. For example the $SIGNAL S command,
which generates a list of the signals in the circuit. All the
commands which follow a listing command on a line are item-
specific, that is, their exact meaning depends upon the type of
item being listed.

Object data commands are those whose value derives from the
circuit object being listed. These commands can be context-
sensitive and may not have meaning in all locations in a script.

Command Language Introduction

For example, the $SIGNAME command can appear in a
$SIGNALS listing and causes the name of that signal to be
substituted. The $SIGNAME keyword has no meaning standing
alonein the script.

¢ System data commands cause a specific internal value to be
directed to the output file, e.g. the design file name or the system
date.

B ATTRIBUTE OR VARIABLE REFERENCES—References to
script variables or device, pin, signal or design attributes start with the
“&" symbol. The reference will be replaced with the actual value of
the attribute or variable. More information on variables can be found
under “ Script Variables’ on page 14.

If the desired output file format requires that a“&” be placed in the
script, it is best to precede the “&” with the escape character “\”
(backslash) to ensure that it will not be accidentally interpreted as an
attribute reference.

B COMMENTS—Comments are text enclosed between left and right
braces “{” and “}”. Comments are intended for internal
documentation of the command file. No characters between or
including the braces, or a carriage return following the closing brace,
will be transmitted to the report. If you need to transmit the character
“{” to the output file, you must precede it by the “escape’ character
“\" (backdlash) so that it will not be recognized as a comment.

All other text and special characters (e.g. tabs and form feeds) found in
the command file are considered to be raw text and are transmitted to the
output file unmodified. The only special processing of control characters
that occursisfor carriage return and line feed line terminator characters.
Thisis doneto ensure cross-platform compatibility of script files and out-
put files.

» More information on line termination can be found under “Line Termi-
nators” on page 39.

Any item starting with a$ or & but not recognized as a command or vari-
able word will be transmitted to the report file. No error messages are
generated for incorrect keywords.

NOTE: It is not recommended that Macintosh “option key” characters be
used in reports since they use character codes outside the normal ASCII

Command Language Introduction

character set. This may result in difficulty transmitting the files to other
programs and some of the Report format options may not function
correctly.

A number of standard script files for report generation and error checking
are provided with DesignWorks and some of these are explained in detail
in“Script Examples’ on page 46. These can be used as guidesin creating
your own scripts.

DesignWorks Object Types

For report generation purposes, a DesignWorks circuit consists of two
major types of objects: devices and signals. The Scripter tool has two gen-
eral sets of options allowing information on each of these types of objects
to be extracted or written to afilein avariety of forms.

Devices

The device listing features are used to create component lists, bills of
materials and types of netliststhat arelisted by device, such asa SPICE or
PCad format. For each devicein alist, any of the following data can be
included:

B Device Name—this is the name applied to the device instance, e.g.
" Ul” , 13 R231! , 13 J12H , etC.

B Device Attributes—the contents of any device attribute fields can be
included in alisting.

B Device Token—the device token is an integer that is assigned
automatically by DesignWorks when the device is first placed on the
diagram and not changed as long as that device exists in that circuit.
This token number can be used by an external program to determine
which devices are new and which are old in a circuit, despite name or
parameter changes.

B Device Sequence Number—this is a temporary integer that is
assigned by the Report tool as part of its sorting process and may
change during areport if multiple sorts are done. This can be used in
cases where external programs require objects to be sequentially
numbered.

m Device Type information—this refers to information retrieved from
the library when the device was created, such as the type name (e.g.

Command Language Introduction

“74L.S123"), number and types of pins, etc.

m Device Graphica Information—information about the device's page
number, position and orientation on the schematic are available to
alow transfer of schematic data to other systems, or to create
reference listings.

m Attached signals—a device listing can also contain a list of the
signals attached to each pin of the device. Each signal entry can
reference any of the signal data described below. See
“$DEVPINFORMAT” on page 107.

Device listings are created using the $DEVICES command, described in
“$DEVICES’ on page 103.

Signals

Signal listings are used primarily for creating netlists for transfer to exter-
nal simulators or PCB systems. The following information is available
about each signal in the circuit:

B Signa Name—this is the name of the signa as it appears on the
schematic, or is assigned automatically by the report generator.

B Signa Attributes—the contents of any signal attribute field can be
included in asignal listing.

B Signal Token—this is an integer that is assigned automatically by
DesignWorks when the signal isfirst created and not changed as long
asthat signal existsin that circuit. Note however, that many common
editing operations result in signals being merged or broken apart,
which will often result in the signal token changing even though some
of the connectionsin the old signal remain. This token number can be
used by an external program to determine which signals are new and
which are old in a circuit, despite name or parameter changes.

B Signa Sequence Number—thisis atemporary integer that is assigned
by the Report tool as part of its sorting process and may change
during a report if multiple sorts are done. This can be used in cases
where external programs require objects to be sequentially numbered.

B Attached device pins—any signal list can contain alist of the device
pins interconnected by this signal. Pin format options allow amost
any of the device parameters mentioned above to be included in each
pin entry. See “$SIGPINFORMAT” on page 169.

Signalslistings are created using the $SIGNAL S command described

Command Language Introduction

later in this chapter.

Definition Commands

Definition commands control the general format of the report, for exam-

ple:

B Thenumber of rows per page.

B Thenumber of columns per row.

® Other report formatting options

Each of these parametersis set by using specific command keywords, the
most common of which are summarized in the following table.

» Complete descriptions of these commands is provided in “Part II—
Script Keyword Reference” on page 63.

$LINEWIDTH(n)

$PAGELENGTH(n)

$LINESUSED(n)

This command specifies the maximum number of
characters that will be placed on a line before an
automatic carriage return isinserted.

Specifies the action to be taken when a page is full (i.e.
when the number of lines specified in $LINESUSED is
exceeded).

Specifies number of lines to use on each report page
before moving to the next page.

$SMAXITEMSPERLINE(Restricts the number of entries placed on a line in

n)
$SAUTONUMBER(num
ber of pins)

$DEVPINSEQUENCE
&attrField

$COMBPINSON/
$COMBPINSOFF
$ALIGNCOLSON/
$ALIGNCOLSOFF

repeating structures such as anetlist.

Any device with less than or equal to the number of pins
specified will have pin numbers automatically assigned if
none were present in the circuit file. This option is
intended to provide pin numbers for discrete components
inacircuit, since they do not normally have pin numbers
on adiagram. The default number is zero.

Specifies that the order in which pins appear in a pin
listing is to be determined by an attribute specified in the
device. This is intended for generating report formats
such as SPICE, in which pin order is significant, when
some devicesin adesign may not have their pins defined
in the required order.

When ON causes multiple pin connections on the same
device to be combined. Default is OFF.

When ON causes extra blanks to be inserted between
netlist or component list entries to force column
alignment.

Command Language Concepts

$SPACE(number) Sets the column spacing used when ALIGNCOLSON is

set. Default is 16.
SITEMSEPARATOR(str Specifies a string that will be inserted between
ing) successive itemsin an item list.
$SUNNAMEDDEVS(stri Specifies a string that will be output whenever a device
ng) nameis called for and the device in question is unnamed.
$SUNNAMEDSIGS(strinSpecifies a string that will be output whenever a signal
g) nameis called for and the signal in question is unnamed.

The default value is “unnamed”. For example:
$ONEPINSON/ When ON suppresses the pin number from being printed
$ONEPINSOFF in netlist entries for devices with only one pin. Thiswill

cause entries such as test points to appear as TP1 instead
of TP1-1. Default is OFF.

$CONTSTART(string) Specifiesastring of characters that will be inserted at the
beginning of each line that is a continuation from a
previous line (i.e. whenever SMAXITEMSPERLINE or
SLINEWIDTH is exceeded while writing alist).

$CONTEND(string) Specifies astring of characters that will be inserted at the
end of each line that is being continued onto the next line
(i.e. whenever SMAXITEMSPERLINE or
$LINEWIDTH is exceeded).

$BLANKREPLACE(stri Specifies astring of characters that will be substituted for

ng) a blank in any device or signal name. This is done to
accommodate systems which cannot accept blanks in
names.

$UNCONNPINSON/ When ON, allows device pins that have no signa lines

$UNCONNPINSOFF attached to them and are not connected to any other
signals by name to appear in the netlist, otherwise they
are suppressed. Default is ON.

$REPEATITEMON/ This option, when ON, forces the last item in any list to

$REPEATITEMOFF be repeated at the start of any continuation line. This is
used by some systems to recognize continuations.

$CONTREPEATON/ Thisoption, when ON, forces the first part (up to the start

$CONTREPEATOFF of thefirst pin item) of the first line in asignal list to be
repeated at the start of any continuation line. Thisis used
by some systems to recognize continuations by repeating
the signal name or other parameters on each successive
netlist line for the same signal.

Command Language Concepts

This section provides information on a number of concepts that are

Command Language Concepts

important to the operation of scripts.

Current Design or Current Object

A script can beinvoked under many different circumstancesin addition to
the ssimple * Scripter” command in the Tools menu. A script can some-
times be executed in response to an action on a specific object, such asa
device. Similarly, one part of a script may cause another part of ascript to
be invoked to generate data for a specific object.

For these reasons, it isimportant to be aware of what the “ current object”
isat any point in ascript. In fact, normally thereis a sort of hierarchy of
objects that may be involved in evaluating a given command. For exam-
ple, suppose you are generating alisting for apinin anetlist. The pinis
associated with a parent device and an attached signal, which arein turn
associated with the parent circuit, which isin turn contained in some
design. Datafrom any of these objects can be used in generating apin list-

ing.

It isimportant that a script not attempt to access datafor a“smaller”
object that the current one. E.qg. If the current object is a device, you can-
not use the SPINNUM keyword because it requires access to a specific
pin. In general, a device has many pins and the Scripter cannot assume
that it knows which one you mean. On the other hand, if the current object
isapin, you can use $DEVNAME to get the attached device's name,
because there is an unequivocal device associated with a pin.

The following points summarize how the current object is determined:

B |f ascript is executed by a user command from a menu, the current
object at the sart is the current circuit (i.e. the topmost circuit
window).

m |f ascript isinvoked as aresult of some operation on an object (e.g.

placing a device), then the current object will be the one just edited
(i.e. the device just placed).

B Any part of ascript that is executed as part of an iterating command
(like $DEVICES) will have asiits current object the current one in the
iterating sequence.

Command Language Concepts

Data Types

The script language only really implements one type of data: the character
string. The internal representation of character strings limits their length
to 32,767 characters. This does not limit the total length of an output file,
but no single line, variable value, or attribute value can exceed that
length. Any commands that require other types of data (e.g. numeric or
Boolean) will convert the arguments from the character string format to
the required internal format, then convert the results back to a character
string again.

Integers

Some of the keywords expect values that would be considered to be an
“integer” datatypein aregular programming language. For commands
such as $ADD, the arguments will be assumed to be the string representa-
tion of decimal integers and will be converted to signed 32-bit internal
values for the operation. The result is then converted back to a decimal
integer string.

No errors are reported during this conversion process. Conversion of a
string to an integer stops as soon as any non-decimal character is encoun-
tered. Thus, an empty string, or any string starting with a non-numeric
character, will be treated as zero.

Booleans

Some of the commands operate on or return “Boolean” (i.e. TRUE or
FALSE) vaues. Again, theinternal representation is a character string.
For commands such as $IF that evaluate the “truth” or “falseness’ of the
data, an argument will be taken as TRUE if it contains any non-zero-
length value. Note that the contents of the string are not examined, so
even a blank character will count as TRUE. An argument will count as
FALSE only if it is zero length. (Note that there isa$NONBLANK func-
tion which can be used if you want to count a“blank” string as FALSE.)

For commands that return a“boolean” value, such as $AND, TRUE is
represented by astring consisting of asingle character “1”. FALSE is rep-
resented by an empty string.

Command Language Concepts

Blocks

A number of script commands refer to a block. A block issimply a set of
linesin the script file that start with a $DEFINEBLOCK command and
end with an $END. Once defined, ablock istreated internally asif it was
a separate file. When the script is executed, everything between the
$DEFINEBLOCK and corresponding $END is skipped until some other
part of the script makes explicit referenceto it.

Blocks have a number of uses, including:

B They can be used as a kind of “subroutine” which can be invoked
from elsewhere in the script using the $INCLUDE command. This
can be useful if several parts of ascript need to make use of the same
sequence of lines.

B They can be used simply to delimit a block of text to define a value
mapping table for the STABLE, $MAP or $VERIFY commands.

B They can be used to define a set of script lines to be executed under
specific circumstances, e.g. to define the format of an internal circuit
in ahierarchical netlist, asin the SINTERNAL command.

For DesignWorks 3.x users, the SDEFINEBLOCK command is an exten-
sion of the $DEFINECIRCUIT command used in hierarchical report
forms.

Command Arguments

Many $ commands can be followed by argument strings contained in
parentheses. These arguments can pass information used in performing
the requested operation. In some cases the arguments are optional and the
command will perform a default function with no arguments. For exam-
ple the $DATE command, when used without following argument in
parentheses, returns a string containing the date of the report in a standard
format. If you want to control the format, you can add a string argument
containing format control characters.

Argument Data Types

Asdiscussed in “Data Types’ on page 11, there isreally only one kind of
data in the Scripter, the character string, but it may be interpreted in vari-
ous ways by different commands. Various kinds of arguments are used,

Command Language Concepts

depending on the command:

String —Everything is a string.
Integer—This s the string representation of adecimal integer.

Boolean—This is a string in which any non-null value will be taken
as TRUE and an empty string is taken as FAL SE.

Block—Some commands refer to another block of text elsewhere in
the command file. Such a block starts with a $DEFINEBLOCK
command (which specifies the name of the block) and ends with an
$END. The block can then be referred to by name by various
commands. Blocks are used to specify value mapping tables, sets of
commands to execute under specific circumstances, and other uses.

Argument Syntax

For any command that takes arguments, the argument list is enclosed in
parentheses and the individual arguments are separated by commas.
Because the arguments are literal strings where every character is poten-
tially significant, several special cautions should be observed:

Leading and trailing white space is removed from argument strings. If
you want to pass a leading or trailing blank or tab in an argument
string, or asingle blank by itself, you must escape it with a backslash.
For example, the following sets the variable to a string consisting of
one blank:

$SETVAR(Bl ank, \)
If you need to pass a comma or closing parenthesis in an argument
string, these should also be escaped, asin:

$TABLE(Val ueList, \,, \))
Note that this is passing three arguments. The first is a block name,

the second is a string containing a comma and the third is a string
containing a closing parenthesis.

Control and Escape Characters

Anywhere in ascript file where literal text is allowed (i.e. anywhere not
inside a$ command structure or comment), the following two format
options can be used to insert special charactersin the output stream:

Control characters (i.e. ASCII codes less than 20 hex) can be inserted

Command Language Concepts

in the file using the * (shift 6) character. The character following the »
will be inserted in the file with 40 hex subtracted from itsASCII code.
This means that *@ will generate a null (code 00) character, A will
generate code 01, M will generate OD (carriage return), etc. Note
that the letter following must be upper case.

Special characters that may have specific meanings in the report
command language can be included in the output using the \ escape
character. For example, the brace character { is used to open a
comment block in the command language. To include this character
in the output stream, it should be preceded by the escape character, as
in “\{“. In addition, the escape character can be used to terminate
keywords or attribute field names that might otherwise run into the
following literal text. For example:

&Ext r aText \ ENDMCDULE;

In this case the \ is used to separate the field name “ ExtraText” from
the literal text “ENDMODULE;”. Without the \ escape character, the
command language interpreter would consider the text
ExtraTextENDMODULE to be an attribute field name.

Script Variables

A script can create, modify and refer to string variables. The following
notes outline the rules for string variables:

A variable is defined and set by the $SETVAR command, which is
described in “Part 11—Script Keyword Reference” on page 63.

A variable is referred to (i.e. its value is extracted) by using the
variable name prefixed by an ampersand “&”. Note that this is the
same way that an attribute field in the design isreferred to, so it isthe
user's responsibility to ensure that there is no accidental name
overlap. If you create a variable with the same name as an attribute
field, the variable will take precedence. |.e. A referenceto & namewill
return the value of the variable.

A variableis “globa” throughout the script. I.e. Once a variable of a
given name is set anywhere, its value remains set and it can be
referred to in any part of the script executed later.

Variable values disappear when the script finishes executing, i.e. if
you run the same or another script later, the same variable will not
retain its old value.

Command Language Concepts

B Variable names can be 1 to 16 characters long and can consists of
letters, numbers, dots “.”, and underscores “ . Variable names
consisting entirely of decimal digits are reserved, as discussed bel ow.

The following simple example shows how avariable is set and refer-
enced:

$SETVAR(MyVar, This stuff becomes the value)
The value of the variable is: &JyVar

Special Variables &1—&9

Variable names consisting entirely of decimal digits are reserved for use
as regular expression “match” variables. When aregular expression is
executed, these are automatically set to the values matched by parts of the
expression. A complete description of thisfacility is given in the section
“Regular Expressions”.

Predefined Variables

Y ou can predefine variables and set them a a certain value by using the
SCRIPTVAR setup file keyword described in the Appendix “ Setup File
Format” in the DesignWorks 4.0 User’s Guide. This can be useful to
alow you to make a script that uses variables for items that may change
from user to user, such as directory pathnames. A path variable can be
defined once in a setup file and a setup of scripts can then refer to them.
The variable can then be changed by changing only one reference in the
Setup file and all scriptswill then use the new value.

Note that these variables are not “global” in that they are reset to their
defined values at the beginning of each of each script. Y ou can modify
them using the $SETV AR command, but they do not retain the modified
value when the same or any other script is executed. If thistype of behav-
ior is needed, it can be implemented by storing valuesin attribute fields
associated with the design.

Attribute Field References

The ability to easily extract the values of device, signal, pin or design
attributes in areport is one of the most important features of the script
language. An attribute field isreferred to (that is, its value is extracted)
simply by using the attribute field name prefixed by an ampersand “&”.
For example, the following single line script will list all the devicesina

Command Language Concepts

circuit, showing the name followed by the contents of the Part and Value
fields:

$DEVICES$DEVNAME &Part &Value

The abject type that is being referred to by a given attribute reference
depends on its position in the file and on how the script was invoked.
With the exception of pins (described in the next section), an attribute ref-
erence always refersto the current object. In most circumstances, this
means that afield reference that appearsin a$DEVICES line refersto a
device attribute, areference that appearsin a$SIGNALS linerefersto a
signal attribute and a reference that appearsin atop-level line (i.e. not in
$DEVICES or $SIGNALS) refers to adesign attribute.

» See the rules for determining the current object in “Current Design or
Current Object” on page 10.

Precedence of Field References in Pin Listings

Some ambiguity can arise in attribute references when the current object
isapin, that is, inside a $PINS command. In order to allow reference to
attributes belonging to the pin itself or the associated device or signal, the
Scripter searches for values in the following order:

If the named field has a non-null value in the current pin, it is used.

Otherwise, if the field has a non-null value in the device associated
with the current pin, it is used.

B Otherwise, if the field has a non-null value in the signal associated
with the current pin, it is used.

This alows you to specify adefault value for an attribute in a device or
signal and then overrideit for selected pins. For example, the following
script refers to an attribute field “ConnType” that has been defined for
both pins and devices:

$DEVP INFORMAT ($P INNAME=&ConnType)
$DEVICES$DEVNAME $PINS

If the field ConnType has a value of “Normal” in the device, a value of
“Special” in the third pin and anull value in all other pins, you will see a
listing like the following:

DEV1 PIN1=Normal PIN2=Normal PIN3=Special PIN4=Normal

Controlling Report Page Layout

Attribute vs. Variable References

Note that attributes are extracted the same way as script variables, soitis
the user’ sresponsibility to ensure that there is no accidental name over-
lap. If you create a variable with the same name as an attribute field, the
variable will take precedence. That is, areference to & name will return
the value of the variable.

NOTE: When the script language parser is scanning for commands, it takes
any contiguous group of identifier characters as a single identifier. This
can be a problem if you wish to append some fixed text to the extracted
value from a field. For example, if you wished to append ““_000" to every
part number (from a field called PartNum) in a bill of materials, it might be
tempting to put this in a script:

&Part Num 000

However, the script language will interpret this as a reference to a field
called PartNum_000, since all these characters are valid in an identifier.
The solution is to insert an escape character after the identifier to clearly
delimit it, as in:

&Par t Numi_000

Controlling Report Page Layout

A number of Scripter keywords and features are design to assist in creat-
ing neat, human-readable reports. This section will cover the setting of
page height and width, page and value breaks and column alignment.

P Specific details on each of the keywords used here are provided in “Part
II—Script Keyword Reference” on page 63.

Setting Page Height and Width

Three keywords control the number of lines of text output on each page
and the numbers of characters on each line: SLINEWIDTH, $LINE-
SUSED and $PAGELENGTH.

Controlling Report Page Layout

NOTE: The Scripter is generating a pure text file and has no direct control
over the fonts, tab settings, margins and other page layout parameters
used when printing the report output. It is the user’s responsibility to
understand the relationship between these settings and the actual line
and character counts used in generating the reports.

A typical usage of these commands would appear as:

$LINEWIDTH(60)
$LINESUSED(56)
$PAGELENGTH(66)

Thisindicates to the program that the maximum number of characters to
be output on alineis 60 and the maximum numbers of lines of text on a
page isto be 56. Note that the Scripter does not break individual text
items on output. The line width is only used to decide whether or not to
put out the next item generated by a repeating data command. If the fixed
contents of aline (i.e. outside of repeating data items) is greater than the
specified width, it will be output regardless.

The $PAGELENGTH command indicates the total number of lineson a
page, including the $LINEUSED, the page header and any blank lines
generated to fill out the page. In this example, the total page length is 66
lines. If no header has been specified, once the 56 lines specified by
$LINESUSED have been generated, the program will generate 10 empty
lines to meet the specified total. Obviously, the number of lines that will
fit on a page depend on the font and line spacing settings. It may be neces-
sary to experiment to choose an appropriate $SPAGELENGTH setting for
your output medium.

A specia $PAGELENGTH value of zero can be used to indicate that an
ASCII form feed character should be output to indicate a page € ect.
Many word processing packages accept this character as a page break.

Defining a Page Header

Any block of text can be defined as a page header to be inserted at the top
of each generated page. Thistext is defined in a section that starts with a
$HEADER keyword and ends with an $END keyword. The contents of
this section is passed to the output file immediately to create the header
for the first page, then each time a page feed occurs.

The header section is scanned for any commands or variablesto substitute

Controlling Report Page Layout

beforeit is output. Any command keywords that are shown in the key-
word reference asvalid in “ Script” or “ Script - Design” can be used in the
header section. These allow you to insert the page number ($PAGE), date
($DATE/$TIME), design name ($DESIGNNAME/$FILENAME), con-
tents of design attributes (& field) and other values in the header section.

Here is asimple example of a page header specification:

$HEADER

XYZ Industries of Smithville, Inc.
Bill of Materials Report

File: $FILENAME Date: $DATE

$END

Setting Column Alignment

Since the Scripter is generating atext file and does not print directly, the
actual column alignment that is obtained on output depends on the mech-
anism used to print the final report. There are two general ways of ensur-
ing alignment of columns of text in reports generated by the Scripter:

B You can use the $COL command for fixed items or the
$ALIGNCOLSON command for repeating items. This inserts extra
blank characters in the output to ensure column alignment. This only
provides correct aignment on output when used with a fixed-space
font such as Courier.

® You can inset tab characters using the $TAB and
SITEMSEPARATOR commands and then set the tab spacing as
desired in the word processor you use to print the results.

Defining a Value Break

The Scripter alows you to define a block of text to be output each time a
computed value changes while generating a sorted $DEVICES or $SIG-
NALS listing. This alowsyou to insert a new heading or simply a blank
line for extra readability between sections of areport. For acomplete
description of this feature, see “$BREAK” on page 70.

Date and Time References

Date and Time References

The script language provides a methods for displaying and manipulating
date and time valuesin avariety of formats. In addition to the current date
and time provided by the operating system, date and time values are used
in anumber DesignWorks operations, including:

The created and last modified dates of the current design file are
available for usein reports. Note that “last modified” refersto the disk
file associated with the design, not the design itself. Schematic editing
operations do not change this value. For designs that have not yet
been saved to afile, these will be the date the file was created.

The last modified date of the source device library is stored in a
device attribute called LibDate when a device is placed in a design.
This can be used later to determine if the design is up to date with
respect to the symbol library.

The last modified date of the external circuit file is stored in a device
attribute ExtCctDate when the external circuit is attached as a
subcircuit.

When a device is placed in a schematic, the current time is stored in
the DateStamp.Dev field of the device. This can be used in back- and
forward-annotation processes that need to uniquely identify devices
even if the name has been changed.

> See more information on date stamps in the chapter entitled “Device
Naming and Packaging” in the DesignWorks 4.0 User’s Guide.

Raw Date and Time Format

In DesignWorks, whenever a date is stored automatically in an attribute
field, for example in the LibDate field, it is stored in the raw Macintosh
internal format. Thisis an integer value that represents the number of sec-
onds since January 1, 1904. When thisvalueis stored in an attribute, it is
converted to an unsigned decimal character string. The $DATE and
$TIME commands provide formatting operations to convert these values
to human-readable form.

Sorting and Merging

Date and Time Formatting Commands

The $DATE and $TIME commands can be used in a number of different
forms to display the current system time or any stored time value used in
DesignWorks time-stamping functions. The $DATE and $TIME com-

mands are described in detail in*“Part I1—Script Keyword Reference” on

page 63.

Sorting and Merging

The script language provides the ability to sort device and signal listings
on any datafield. In addition to the obvious application of producing
sorted listings for improved readability, sorting provides the basis for
these additional functions:

m A merging function allows all devices or signals with the same sort
value to be combined into a single line in the output. This can be
used, for example, to create a“bill or materials’ stylelisting in which
asingle line is devoted to one part number and lists all instances of
that part number. This is described in more detail in “Enabling
Merging” on page 24.

m A vaue break function allows the insertion of a header or page break
when some field or computed value changes. This is described in
“$BREAK” on page 70.

The $SORT Command

The $SORT command provides the ability to sort device and signal list-
ings on any data field. Items with the same value in any field can be
optionally merged into asingle line. This allows listings to be organized
to suit various applications, for example:

Device or signa lists can be sorted by name to enhance readability.

Device lists can be sorted by type so that each line lists one device
type with al information common to that type and alist of instances
of the type.

B A device list can be sorted by page number to show the devices used

Sorting and Merging

on each page.

B Signalscan be sorted by an attribute field, for example to give priority
to certain nets so they are listed first for autorouting purposes.

m Devices can be sorted by any attribute field, for example by
component value, stock number, cost, etc.

The $SORT command has the following form:

$SORT objectType fieldl field2 ...

Where:

objectType must be either “$DEVICES’ or “$SIGNALS’.

fieldl, field2, etc. are identifiers indicating which fields to sort on. The
list is sorted first on the first field. If any items in the list have
identical valuesin that field, then the groups of like-valued items are
sorted on the next specified field, etc.

Once a sort has been done, it remains in effect for all subsequent listings
on that object type until the next $SORT or $FIND command. Each
$SORT clears the previous $SORT. Sorting can be in ascending or
descending order, as described below.

The following field specifications are valid in al $SORT commands:

$ASCENDING

$DESCENDING

This specifies that all following fields specified should be
sorted in ascending order. This is the default direction, so
ASCENDING will normaly only be required after a
DESCENDING to reset the sort direction for subsequent
fields on the same line.

This specifies that al following fields will be used to sort in
descending order.

If objectTypeis $DEVICES, the following field specifications can be

used:

$DEVNAME

Sort on the device name. If no name exists in the circuit, and
no name has been assigned using ASSIGNNAMES, then the
item will be placed at the end of the list. If the device name
contains a numeric portion (e.g. U12), then the numeric part
of the name is sorted on its integer value, instead of its
character value. E.g. the name U12 will appear before U110,
instead of after, asit would in apurely lexical sort.

$DEVHIERNAME

$DEVINSTNAME

$POSX

$POSY

STYPENAME

$ORIENT
$PAGE
$NUMPINS
$DEPTH

&LattrField

Sorting and Merging

Sort on the device hierarchical name, i.e. a name generated by
prefixing the device name with the names of all parent
devices in the hierarchy. This is normaly only used in
flattened netlists.

Sort on the contents of the InstName field. This is normally
only used in flattened netlists.

Sort on the horizontal position of the top left corner of the
device symbol on the diagram.

Sort on the vertical position of the top left corner of the device
symbol on the diagram.

Sort on the device's type name, i.e. as it appears in the Parts
palette.

Sort on the device orientation.

Sort on the page humber that the device appears on.

Sort on the number of device pins.

Sort on the contents of the Depth attribute field. NOTE: This
field will only be valid if the mode is enabled.

Sort on the contents of the attribute field named attrField in
each device. If that field is empty or does not exist in a given
device, then that device will be placed at the end of the list.

If objectTypeis $SIGNALS, the following field specifications can be

used:

$SIGNAME

$SIGHIERNAME

$NUMPINS
$SIGSOURCE

.&attrField

Sort on the signal name. If no name exists in the circuit, and
no name has been assigned using ASSIGNNAMES, then the
name “unnamed” will be assumed. See the note under
“DEVNAME” above regarding sorting numeric portions of
the name.

Sort on the signal hierarchical name, i.e. the name of the
signal prefixed by the names of al parent devices in the
hierarchy. Thisis normally only used in flattened netlists.
Sort on the number of device pins attached to this signal.

Sort on the order of appearance of this signal in a
SIGSOURCE command. If the signal does not appear in a
SIGSOURCE command (as most won't), it will appear after
the SIGSOURCE signals. Thisis used to place al power and
ground nets at the front of a netlist.

Sort on the contents of the attribute field named “attrField” in
each signal. If that field is empty or does not exist in a given
signal, then that signal will be placed at the end of the list.

P> See the examples in ““Script Examples” on page 46 for more informa-
tion on how to use the sorting capability.

Sorting and Merging

Enabling Merging

The combination options $COMBSIGSON/OFF and $COMBDEY SON/
OFF instruct the Scripter to combine itemswith the same sort valueinto a
single linein the listing. This can be used to produce a variety of useful
listing formats, for example listings of all devices having a certain type
name.

| MPORTANT: The “COMB” options will have no effect if no sort has been
specified since they only operate on sorted values.

$COMBSIGSON/$COMBSIGSOFF

When ON causes sighals with the same sort value to be combined into a
single net in the netlist. Default is OFF.

NOTE: COMBSIGSON should not be used in most normal netlisting
applications. Any like-named signals have already been logically
connected by DesignWorks and will be listed in one entry even if
COMBSIGS is OFF. COMBSIGSON will have the additional effect of
merging like-named signals, even if they appeared on different pages of
the schematic.

$COMBDEVSON/$COMBDEVSOFF

When ON causes devices with the same sort value to be merged into a
single entry in the component list. Default is OFF.

Display of Multiple Values in Merged Lines

Whenever merging is enabled (that is, SCOMBSIGSON or $COMB-
DEVSON isactive), asingle linein alisting can represent an arbitrary
number of circuit objects. All objects on that line have the same sort value
but will generally differ in other values.

For example, this simple script:
$SORT $DEVICES &Part

$COMBDEVSON
$DEVICES&Part $DEVNAME

will produce a sorted list with one line per Part value, sorted by Part.
When the Scripter encounters $DEVNAME it actually puts out the names

Sorting and Merging

of al the devices merged on that line, so atypical line will ook like:
74ALS00 U23 U34 U125

Items with multiple values will always be sorted by value and are aways
merged, i.e. only unique values are displayed. In the example above, if
multiple device symbols have the same name, that name will only appear
onceinthelist.

Disabling Multiple Value Display

There may be cases where the display of multiple values on merged lines
would not be desirable. An example is the use of date stampsin PCB
netlist output. If multiple gate symbols are merged into a single package
in the netlist, the date stamp value will be different on each of the device
symbols being combined into one package. However, the PCB package
only wantsto see asingle value sinceit only considersit to be one object.
There are two ways of creating asingle value for use in the report:

B The $SINGLE keyword disables multiple value display for the next
command that generates any object-derived data. When this is used
the value that will be displayed in the first one encountered in the
internal circuit structure. There are no guarantees that this value will
be thefirst onein any sort sequence.

B You can use a function call to derive a value from the list of object
values. There are three built-in functions that may be useful for this;
$COUNT (a count of the number of items), SMIN (the item with the
lowest numeric value) and SMAX (the item with the highest numeric
value).

Multiple Value Items in Function Arguments

When a dataitem that represents multiple values is used as an argument
to afunction command, the question arises of whether the valueis
expanded before or after the function is called. The Scripter’s default
behaviour isto expand multiple values after afunction is evaluated. Put
another way, dataitemsthat are passed as arguments to a function are not
expanded to multiple values. It is assumed that the function will be called
once for each object being merged and that the data item in the argument
will take on its appropriate value for that single object.

This default behaviour can be overridden using the $SMERGE keyword,
which can be thought of as the opposite of $SINGLE. If SMERGE is

Implementing Mark as OK in Error Checking Scripts

placed before a dataitem, its value will be the expanded value of all
objects that it represents even if it is an argument to afunction.

We will illustrate this by a simple example. Suppose we have a circuit
with two devices having the same value in the Part attribute, but different
values, “1” and “2” respectively, in the Value attribute. We then execute
this script:

$SORT $DEVICES &Part

$SETVAR(Testl,)

$SETVAR(Test2,)

$DEVICES&Part $SETVAR(Testl, &Value) $SETVAR(Test2,
$MERGE&Value)

The value of Testl is &Testl

The value of Test2 is &Test2

This script will generate the following output:

The value of Testl is 2
The value of Test2 is 1 2

In this case the first $SETV AR command is executed twice, once with
Vaue equal to “1” and once with Value equal to “2”. The second call
overwrites the value of Testl set by thefirst call. Note that thereisno
guarantee of the order of execution, so the value output might be “1”.

The second $SETV AR has a $M ERGE command, indicating that we
want the & Vaue item to be substituted with all the values of the merged
objects, inthiscase "1 2".

NOTE: The second $SETVAR is still executed twice, even though it
produces that same value both times. This could be overridden by placing
a $SINGLE in front of $SETVAR. In this case, the result would not be
affected, but it would be a minor inefficiency.

Implementing Mark as OK in Error Checking Scripts

A number of Scripter commands are provided to assist in creating a
“Mark as OK” function in error checking scripts. Thisis primarily
intended for use with the ErrorScript tool, although it could be used else-
where. The ErrorScript tool has a“Mark as OK” button which the user
clicksto indicate that the current object found by the error checking script

Implementing Mark as OK in Error Checking Scripts

should be considered to be not in error and not be located again by future
runs of the same error check. It isthe error checking script’s responsibil-
ity to implement this function and to provide the necessary data to the
ErrorScript tool.

» More information on working with the ErrorScript tool is provided in the
chapter entitled “Tools for Searching, Browsing and Error Checking’ in the
DesignWorks 4.0 User’s Guide.

How the Mark as OK Function Works

In order to allow a“Mark as OK” setting to be specific to acertain test, a
valueis stored in the OK Errors attribute field which represents a bit set
numbered from 0 to 31. In designing a set of error checks for adesign kit,
abit number is assigned to each error check. When it is scanning circuit
objects looking for errors, the script should check its assigned error bit. If
the bit ison, then this error check has been masked out for this object and
the object should not be considered to be in error.

NOTE: In order to reduce duplicate usage of error bits, bit number 0 to 15
are reserved for use in scripts provided with DesignWorks. Users are
encourage to use bits 16 to 31 for their own scripts.

Error Bit Functions

This table summarizes the functions available to operate on the contents
of the OKErrorsfield:

$ERRORBITON(num) Thisreturns aTRUE valueiif the given bit number is1in
OKErrors, that is, if the corresponding error check
should be skipped for this object.

$ERRORBITOFF(num) ThisreturnsaTRUE valueif the given bit number isOin
OKErrors.

$SETERRORBIT(num) This sets the given bit number in OKErrors, i.e. marks
thiserror as OK.

$CLEARERRORBIT(nu This clears the given bit number in OKErrors.

m)

$CLEARERRORS This sets the OKErrors field to a null value, i.e. re-
enabling all error checks for this object.

NOTE: There is no absolute requirement that you use the OKErrors
attribute field or any of the functions described here in creating an error

Reporting Power and Ground Nets

checking script. You are free to use any other attribute fields or script
functions in implementing error checks. However, unless there is a good
reason for doing otherwise, we suggest using these functions so that the
user of your scripts sees a consistent implementation.

How the Mark as OK Value is Stored

The“Mark as OK” bits are stored as an unsigned 32-hit integer repre-
sented in hexadecimal form in the OKErrors attribute field. Thisfieldis
predefined as a secondary field for devices, pinsand signalsin al designs
created in DesignWorks.

Reporting Power and Ground Nets

The “signal source” facility in the Scripter allows you to name certain sig-
nalsto be treated as power and ground nets. This has the following two
effects:

® |t alows you to creaste common connections in a circuit using
atribute entries in devices. This can be used to create power and
ground entries in the netlist without having to show all these
connections explicitly on the diagram.

m It informsthe Scripter that the given signals should be merged across
hierarchy levels.

» For an overview of the methods of creating power and ground connec-
tions, see the chapter “Making Signal Connections” in the DesignWorks
4.0 User’s Guide.

Specifying Signal Sources
Any device attribute field may be specified as asignal source by the com-
mand:

$SIGSOURCE(signalName) &FieldName

signalName is the name of the signal to attach pinsto in the netlist.
fieldName isthe name of the attribute field to search for in each deviceto
look for pin numbers to attach to the named signal. If fieldName is omit-

Reporting Power and Ground Nets

ted, the signal nameistaken to be the name of the attribute field to search.

The named device attribute field is assumed to contain alist of pin num-
bers to attach to the signal. This can consist of asingle pin entry, such as
“7", oraligt, such as“5,6,9,14", separated by commas.

| MPORTANT: In this version of DesignWorks, pin numbers are limited to 4
characters. If you omit the comma in a list like the one above, the entire
text string will be taken as a single item and the Scripter will report a
string overflow error.

For example “ Ground” connections can be created as follows:

B Using the Get Info command on a selected device, create an entry
such as “7” in the Ground attribute for a device, in this case
connecting pin 7 to the Ground net.

® Place the command $SIGSOURCE(Ground) in the script file. This
causes Scripter to search all device attributes for fields named Ground
and use the field value as a pin number.

Thereis no fixed limit to the number of SIGSOURCE entries that can be
created.

NOTE: The predefined fields Ground and Power are normally used for
standard power and ground connections. These pin connections are
prespecified for all digital components in the standard DesignWorks
libraries. Corresponding $SIGSOURCE statements are included, where
appropriate, in all standard netlisting scripts. You can create your own
special-purpose power nets by using the $DESIGNSIGSOURCE facility
described in the following section.

Creating Design-Specific Signal Source
Fields

Including a $SIGSOURCE command in a script creates asignal source
that will be searched for al designsthat use that script for output. In some
casesit is desirable to specify a specia power or ground net that applies
only to asingle design. For this purpose, most of the standard report
scripts included with DesignWorks have aline like this:

$DESIGNSIGSOURCE(SigSources)

Reporting Power and Ground Nets

This command provides amore indirect and flexible way of specifying
signal source fields independently for asingle design.

NOTE:

The SigSources design attribute field is predefined in all designs for

this purpose.

This command causes the Scripter to take the following steps:

The attribute field named a an agument of the
$DESIGNSIGSOURCE command is taken to be a design attribute
field. This field is retrieved and scanned for a list of signal source
names like this example:

M nus5V, Pl us3V

Each of the itemsin this list is treated as a signal source. That is the
named field is checked in each device for alist of pin numbers and
any found are added to a net with the same name.

Inthis case, placing “Minus5V, Plus3V” in the design field SigSourcesis
equivalent to placing the following lines in the script, for this design only:

NOTE:

$SI1GSOURCE (Minus5V)
$SIGSOURCE(PIus3V)

The $DESIGNSIGSOURCE mechanism does not provide any way of

specifying a field name that is different from the target net name, as can
be done with the $SIGSOURCE command.

To summarize, here are the steps you need to take to use this feature:

Check that a $DESIGNSIGSOURCE command exists in the netlist
script you are using, or add one. The SigSources design attribute field
is predefined for this purpose. If you are using a design kit provided
with DesignWorks, check the ReadMe file that came with it for more
information.

Place alist of the special signal source fields that you will need in the
design attribute field specified above. These items must be separated
by commas and each must be avalid attribute field name.

Place the desired pin connections for each of these nets in the
corresponding attribute field in each device in your design.

Script Hierarchy Issues

When you produce a netlist from this design, you should see new nets
with the names specified in the design attribute and with the pin connec-
tions derived from the values in each device.

P> Also see “$DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE” on
page 99.

Script Hierarchy Issues

The Scripter has the ability to produce a hierarchical netlist of acircuit,
i.e. alist including the internals of hierarchical blocks. The listing can
proceed into nested blocks to any desired depth to provide the required
detail. For the following discussions, this facility isreferred to as “hierar-
chical netlisting”. Without hierarchical netlisting enabled, only objectsin
the current circuit level (i.e. that displayed in the topmost window) will
appear in anetlist.

Types of Hierarchical Netlists

Two types of netlists can be produced from a hierarchical design:

m Flattened Netlist: A flattened netlist is generated by substituting each
hierarchical block symbol with its internal circuit. All information
about the hierarchical blocks themselves, nesting levels, etc. is lost.
The resulting output appears to have been generated from a flat
design. This format is most commonly used for printed circuit board
netlists.

m Pure Hierarchical Netlist: A Pure Hierarchical Netlist consists of a
netlist of the master circuit for the design, and then separate netlists of
the internals of each type of hierarchical block used. Each internal
circuit can be written into a separate file, or al netlists may be
concatenated in a single file in either top-down or bottom-up order.
Thisformat is commonly used for simulators (e.g. SPICE) and FPGA
tools.

| MPORTANT: Since a Pure Hierarchical Netlist contains only a single copy of the
definition of each internal circuit, it cannot contain any instance data.

Script Hierarchy Issues

> See the Chapter entitled “Hierarchical Design” in the DesignWorks 4.0
User’s Guide for more information on instance vs. definition data.

The $HIERARCHY Command

The $HIERARCHY command in a script file sets the type of netlist out-

put to be generated.

NOTE: The hierarchy mode of the netlist does not have to match that of
the design. For example, you can generate a PURE netlist from a
PHYSICAL mode design. The following table indicates which design
modes are appropriate for the various netlist types.

Report Mode Design Mode Description

$CIRCUIT FLAT

Generate a normal netlist for the single current

PHY SICALcircuit only. Thisisthe default mode.

PURE

$TOPCIRCUIT FLAT
PHYSICAL
PURE
SFLAT FLAT
PHYSICAL
$FLATDOWN FLAT
PHYSICAL
$PURE FLAT
PHYSICAL
PURE
$PUREDOWN FLAT
PHYSICAL
PURE

Generate a normal netlist for the master circuit
of the current design only.

Generate a flattened netlist for the entire
design.

Generate a flattened netlist for the current
circuit and all nested blocks.

Generate a pure netlist for the entire design. In
particular, this causes a $DEVICES listing to
list each unique type of device only once.
Generate a pure netlist for the current circuit
and all nested blocks.

Note these points on hierarchical format:

m A flattened netlist will normally make reference to instance attributes
in the design. Instance attributes are not normally used in a Flat mode
design, so this combination is not recommended.

B PURE netlist mode can be used with a FLAT design but no internal

circuits will be listed.

B In PURE netlist mode, the internal circuit for each block typeislisted
only once, regardless of how many times it is used in the design.
Therefore, instance datais not normally included in a PURE netlist.

Script Hierarchy Issues

m All hierarchical netlists are affected by the Report Options settings
that restrict entry into subcircuits. These are described below.

P See the Chapter entitled “Hierarchical Design” in the DesignWorks 4.0
User’s Guide for more information on instance vs. definition data.

Restricting Reporting of Internal Circuits

Thelisting of internal circuits of individual blocks can be controlled using
the Report Options button in the Get Info command for adevice. The
option “Report this device” will cause this device or block to appear in
the netlist asif it hasno interna circuit. The option “ Report subcircuit”
will cause theinternal circuit of this device will appear in the netlist. |.e.
in a PURE netlist, theinternal circuit will be defined, inaFLATTENED
netlist, theinternal circuit will be substituted and this device will not
appear at all.

NOTE: The “restriction” status is stored in the Restrict device attribute
field. Information on the values stored in this field can be found in the
appendix “Predefined Attribute Fields” in the DesignWorks 4.0 User’s
Guide.

Listing Format for Internal Circuits

For flattened netlists, the output format is usually the same as would be
generated from aflat design, except that hierarchical or instance names
(see next section) are sometimes substituted for definition names.

For Pure Hierarchical Netlists, formatting is more complex since the for-
mat of the master circuit isusually different from the internal circuit defi-
nitions. For this reason, the Report tool treats these two types of circuits
as two separate format definitions.

The general outline of a Pure Hierarchical Netlist format is asfollows:

$PURE mode lists each device type once
so the next $DEVICES listing will only
list unique type definitions.

}
$HIERARCHY $PURE

The DEFINECIRCUIT section gives the listing
format for the internal circuits

}

Script Hierarchy Issues

$DEFINECIRCUIT
{ Listing commands for internal circuit }
$END

{

Use FIND command to locate all devices that
have a non-empty Depth attribute, i.e.

they have an internal circuit. The Depth
attribute field contains an integer indicating
the number of circuit levels below this device

}
$FIND $DEVICES &Depth

{
Sort by the Depth field to list from the

bottom up. The $DESCENDING option could
be used to sort from the top down.

}
$SORT $DEVICES &Depth

{
The following $DEVICES listing will list

each unique type of device only once because
we are in $PURE mode. S$INTERNAL causes the
internal circuit to be output for each device
in the format defined in $DEFINECIRCUIT.
Other text or commands could be included in
the $DEVICES line to output a circuit block
header or terminator.

}
$DEVICES$INTERNAL

{
Now switch to TOPCIRCUIT mode and do a

separate listing for the master circuit

}
$HIERARCHY $TOPCIRCUIT
{ Commands to list master circuit }

Depth Ordering in Pure Netlists

The Depth attribute field is used to select device types that have internal
circuits and to sort by depth for top-down or bottom-up listings.

NOTE: The Depth field is not maintained by the Schematic module during
normal editing operations. The Depth value is calculated by the Report
tool only when a PURE netlist is generated.

The Depth field will be empty for devices with no internal circuit or those
with the “Report This Device” option selected in the device Report
Options. For devices with an accessible interna circuit, the Depth field
will contain an integer indicating the number circuit levels below the
device. E.g. if the device'sinternal circuit contains only bottom-level

Script Hierarchy Issues

devices, the value will be 1.

The Depth field can therefore be used with the $FIND command to per-
form separate listing operations on devices with or without internal cir-
cuits. For example:

$FIND $DEVICES &Depth
will select al devices having an internal circuit, whereas:

$FIND $DEVICES $NOT &Depth

will select devices having no internal circuit. Similarly, the $SORT
command can be used to determine whether internal circuits are defined
from the lowest level up or vice-versa.

$SORT $DEVICES &Depth

will cause the lowest level devicesto belisted first, i.e. bottom up. Thisis
the preferred order for most formats because it ensures that each type of
internal circuit is defined before it isreferred to in any other circuit.

Instance vs. Definition vs. Hierarchical
Names

Devices and signals have three different types of “names’ that are signifi-
cant in producing netlists from hierarchical designs. These are summa-
rized in the following table.

Report Keyword Attribute Field Description

$DEVNAME/ Name Normally used in Flat mode designs. Not

$SIGNAME guaranteed to be unique across a
hierarchical design.

$DEVINSTNAME/ InstName Not normally used in Flat mode designs.

$SIGINSTNAME InstName is used for package assignment

in Physica mode designs. Should be
unique across design.

$DEVHIERNAME/ Temporary A generated name consisting of the device
$SIGHIERNAME generated byor signal Name field prefixed by the names
Scripter of all containing hierarchical blocks.

Note these rules when selecting which type of nameto use in areport for-
mat:

B $DEVNAME/$SIGNAME should not be used in a flattened netlist

File Input and Output

unless you intend to manually guarantee that it is unique across the
entire design and each type of hierarchical block is only used once.

® In Physical mode designs, $DEVINSTNAME should be used as the
device “name” in netlists intended for PCB-layout use, since it
normally contains the package assignment.

®m |n flattened netlists, $SIGHIERNAME should be used for the signa
“name” since it ensures a unique name that is easily located in the
schematic. $SIGINSTNAME can be used but must be assigned
manually to each signal.

Power and Ground Connections in
Hierarchy

Power and ground symbols (i.e. Signal Connector devices) do not make
an immediate logical connection across hierarchy levels. For thisreason,
power and ground connectionsin different circuit levels will be consid-
ered separate netsin aflattened netlist, unless you do one of the follow-
ing:

® Specify the name of each power and ground net in a $SIGSOURCE
statement in the script. This instructs the Report tool to look for those
named nets and integrate them into a single entity.

B Createindividua portsfor the power and ground connections on each
hierarchical block symbol and treat them as regular nets.

]
File Input and Output
The Scripter is essentially atext file processing module, so issues of

directories, file naming, line terminators, etc. are important consider-
ations in writing scripts. This section discusses some of these issues.

File Names and Paths

Whenever afile nameis specified in a script, the issue of which directory
thefileis going to be found in must be considered. Generally, there are
two different kinds of files dealt with by the Scripter:

File Input and Output

B Design-specific files: These include the design itself, netlists or
reports generated from it, back-annotation files and possibly
"include” files that need to be copied into output of some kind. These
files are modified as the design is created and edited by the user.

m System files: These include the scripts used for netlisting and report

generation, Prompter setup tables, etc. These files are normally fixed
and may be shared by a number of users.

Thisdivision of files raises the following issues:

B Most users will tend to keep these two sets of files in different areas.
In fact, in network systems or workgroups, the two sets of files might
be on quite separate machines.

B When creating scripts and other system files, it is desirable to make
them as portable as possible, so that they don’t need to be modified to
run on a variety of systems. For this reason it is undesirable to
include any absolute pathnames in a script.

In order to handle these situations, the Scripter keeps track of two directo-
ries at any onetime:

B The"current directory” for design-specific files.
® The"root directory" for system files.

These are described in the following sections.

Current Directory

While ascript is executing, there is always a"current directory", whichis
the place where output files will be generated. When a script starts, the
current directory will be the one containing the design file associated with
the current design. If the current design has not been saved, then the cur-
rent directory will be the location of the DesignWorks program.

During the execution of a script, the current directory can be changed by
several things:

® Explicitly selecting a directory with the $FOLDER/$DIRECTORY
command.

® Creating a new directory with the $CREATEFOLDER/
$CREATEDIRECTORY command. This sets the current directory to
be the new one.

B Opening anew design. This sets the current directory to be the new

File Input and Output

design’s directory.

Root Directory

The root directory isthe starting point for locating system files such as
scripts and Prompter tables. For larger installations where the program
and common files may be shared over a network, DesignWorks also per-
mits multiple root directories. The following points should be noted
about root directories:

If not otherwise specified in the Setup or .INI file, the root directory is
the one containing the DesignWorks program.

The root directory cannot be changed by any script or user
commands. It isdetermined by settings in the Setup or .INI file.

Names of include files or script names are always given relative to the
root directory. The Scripter does not search recursively insided
directories. Therefore, any script name must be specified either with
an absolute path name (i.e. starting with the disk name), or must be
relative to the root directory.

If there are multiple root directories, the Scripter determines of the
"current” directory (described above) is in any of the specified root
directories, then it searchesfirst in that one. The purpose of thisisto
alow users on network systems to have a directory on their local disk
which contains their designs and local scripts. If this directory is
specified as a root, it will be searched first, before looking in the
program location.

Platform Compatibility Issues

Although the aimost universal use of the ASCI| character set makes mov-
ing text files between systems relatively painless, there are still some
issues that should be considered.

File and Path Names

In thisversion, the Scripter does not provide any portable method of spec-
ifying file and path names. Any path names given literally in ascript will
make it platform-specific. This can be overcome by specifying path
names as pre-defined variablesin the Setup or .INI file. A script (or many
scripts) can then refer to this variable without requiring changes.

File Input and Output

Line Terminators

One aspect of the ASCII character set that has had varying interpretation
isthe choice of charactersto terminate aline of text. Various systems use
different combinations of the line feed (OA hex) and carriage return (0D
hex) characters.

Oninput, i.e. when reading script and include files, the Scripter accepts
any combination of carriage return and line feed as aline terminator. A
script file can be passed between Macintosh and Windows systems with-
out changing its functionality and without passing unacceptable charac-
ters through to the output. Even though a script file from another system
may not display correctly when viewed in atext editor, it should be inter-
preted correctly as script input.

On output, i.e. when generating report files, the Scripter by default gener-
ates line terminators appropriate for the platform it isrunning on. The
SLINETERMINATOR command can be used to explicitly specify output
for Macintosh-, Windows- or Unix-compatible systems, or to customize
the line terminatorsto any string. Note that this command affects only the
normal report output file. Transcript files, if requested are only ever gen-
erated with line terminators appropriate to the host system. See more
information on transcript filesin “ Transcript Output” on page 40.

Special Characters

Both Macintosh and Windows systems alow you to insert special non-
ASCII charactersin text for international punctuation, accents and special
symbols. However, the two systems are not compatible and such charac-
terswill generally not be acceptable asinput in PCB netlist files, etc. The
Scripter does not check for these characters and will pass them through as
literal dataif desired. It isrecommended that you avoid using these char-
acters unless there is avery specific requirement for them.

Types of Output

Output to File

The most common usage of the Scripter isto generate text reports,
netlists, etc. For thisreason, the default behavior isto write all text gener-
ated by ascript to atext output file. If the script does not explicitly create
an output file, the user will be prompted to create one with a standard

File Input and Output

"Save" box as soon as the scripted generatesiits first character of output.
If the script generates absolutely no output, then it will run without this
prompt. This behavior can be changed by using the SREPORTON/OFF,
$CREATEREPORT and $CLOSEREPORT commands, described below.

Text output can be generated with line terminator characters suitable for
an operating system different than the one the script isrunning on. The
SLINETERMINATOR command allows you to set the target system, or
specify and explicit line terminator string.

Note that output files can be "nested" to any desired depth. I.e. A script
can perform multiple SCREATEREPORT commands without interven-
ing $CLOSEREPORT commands. Script output iswritten to the file cre-
ated by the most recent SCREATEREPORT until itisclosed by a
$CLOSEREPORT. Output will then go to the next most-recently-created
file, etc.

Output to Memory Buffer

The Scripter can also be called by other modules within DesignWorks to
perform various operations. The calling module can specify that script
output should be written to a memory buffer for use by that module when
the script is completed. In this case, the user will not be prompted to cre-
ate afilewhen output is generated. Note that the script can still explicitly
create an output file using SCREATEREPORT. Thiswill be considered a
nested output file, as described above.

Transcript Output

The Scripter can support a secondary text output file which is open simul-
taneously with the main output file. Thisisreferred to as a "transcript
file" andisintended as a method of creating an error report or log file that
allows the script user to trace errors that occurred during report genera-
tion, changes implemented by the script, etc.

Many of the same formatting commands and information sources can be
used in writing to the transcript file. Text iswritten to the transcript file
by means of the $SWRITETRANSCRIPT keyword. The argument to this
command is evaluated and the resulting text is written to the transcript
file. Notethat it isthe callers responsibility to insert line terminators
where desired using the SNEWLINE keyword.

Note that the transcript file is always written with line terminators native

Regular Expressions

to the machineit isrunning on. Itis not affected by the SLINETERMI-
NATOR command.

Text File Input

The Scripter hasthe ahility to read line-oriented text files and extract arbi-
trary text dataitems. This can be used compare a design to an external
file or perform simple back annotation tasks. The text file input capabil-
ity isimplemented as a special case of the $INCLUDE command with the
SEXECUTE option.

» For a complete description of this facility and an example of its usage,
see “Using an External File as Data” on page 123.

NOTE: We do not recommend using this facility for performing PCB back
annotation involving gate or pin swaps. These operations can have
complex side effects when used with gate packaging and other
DesignWorks features. The BackAnno utility tool is provided for that
purpose.

Regular Expressions

The Scripter alows you to use Unix-style regular expressions to check
the format of character strings and extract data fields from strings of a
known format. Regular expressions make it possible to perform the fol-
lowing kinds of operations:

B Check adatafield (e.g. a device or signal name) for correct format.
For example, you can easily create a pattern that says "a letter
followed 1 to 9 more letters, numbers or underscores'. If any items
are found that don't match the pattern, you can warn the user of a
possible error.

m Convert the format of a dataitem. For example, suppose you have a
schematic that uses bus names of the form "A[0:7]" and you want to
create a netlist for a system that wants to receive a value that looks
like "A<7..0>". You can create a regular expression that will extract
the parts of the original data item and use them as elements of a new
string.

Regular Expressions

B Extract datafrom an incoming text file. The scripter has the ability to
read a text file one line at a time and execute a script for each line.
You can create aregular expression to match the expected contents of
the line and extract dataitems. These can then be used to set valuesin
circuit objects to perform various kinds of back-annotation.

Regular expressions are invoked using the $SREGEXP command.

The $REGEXP Command

The $REGEXP function isthe only way to invoke aregular expression. It
takes the following form:

$REGEXP(regularExpression, string)

The regular Expression item is a sequence of characters following the
syntax described in the next section. The string item is any charcter
string, which can be aliteral string, like "VALUE", or a sequence of
Scripter commands that generate a string value, such as "$DEVNAME-
$PINNUM".

The $REGEXP function returns a"false” value (i.e. null string) if the reg-
ular expression does not match the string, or a"true" value (i.e. "1") if it
does.

| MPORTANT: The syntax of the function call places a restriction on the use of
commas and closing parentheses as literal characters in both the regular
expression and the string. If either of these are required as a literal
character, they should be preceded by the escape (back-slash) character.
This does not apply to closing parentheses used for grouping within the
regular expression itself. The parser can detect this usage and will not
interpret it as closing the $REGEXP argument list.

Regular Expression Syntax

A regular expression is simply a sequence of characters that will be com-
pared to another sequence of characters. For example, a string of letters
or numberslike "Fred" will match only an identical string of letters or
numbers. A small set of punctuation characters have special meaning and
arereferred to as metacharacters. The regular expression metacharac-
tersare:

\ NS .

Regular Expressions

L11C)*+7

When any of these items is encountered in an expression, they impart
special meaning to one or more of the characters that follow. These
meanings are summarized in the following table::

Regular Expression Metacharacters

Format Meaning

- Matches any character except newline

[a-z0-9] Matches any single character of set.

[ra-z0-9] Matches any single character not in set (in this context ~
means “not”).

\d Matches a digit; same as [0-9]

\D Matches a non-digit, same as [~0-9]

\w Matches an alphanumeric (word) character [a-zA-Z0-9_]

\W Matches a non-word character [™a-zA-Z0-9_]

\s Matches a whitespace char (space, tab, newline...)

\S Matches a non-whitespace character

\n Matches newline

\t Matches a tab

\nnn Matches an ASCII character of octal value nnn

\xnn Matches an ASCII character of hexadecimal value nn

\CX Matches an ASCII control character

\metachar Matches the character itself, i.e. overrides normal mean-
ing of special characters. E.g. "[" introduces a set, but "\["
matches "["

(abc) Provides grouping and remembers the match for later
backreferences and match variables. See below

\n n is a decimal digit from 1 to 9. Matches whatever the nth
set of parentheses matched

X? Matches O or 1 x's, where x is any of above

X* Matches O or more x's

X+ Matches 1 or more x's

x{m,n} Matches at least m x's but no more than n

abc Matches all a, b, and c in order

fee|fie| T | Matches any of fee, fie, or foe

oe

The increasing precedence of operators is alternation, concatenation and
unary (*, + or ?). The repetition characters (*, + and ?) all match as many
characters as possible before proceeding to the right. For example, in the

expression:

Regular Expressions

* *

thefirst .* will always match the entire string and the second .* will
match the empty string. This can be particularly significant when using
match variables asit will affect which portion of the string gets assigned
to which match variable.

Match Variables

A powerful feature of regular expressionsis the ability to “remember”
what string of characters a specific part of the expression matched. When-
ever you enclose part of aregular expression in parentheses, you have
implicitly created a match variable. Because the syntax of regular
expressions only allows one decimal character for amatch variable name,
there are exactly 9 of them, named “1”, “2", “3", etc. Asaregular expres-
sion matching operation proceeds, the string of characters in the subject
string that matched the first set of parenthesesin the expressionis
assigned to 1. Whatever matches the second set of parenthesesis assigned
to 2, etc. If parentheses are nested, the inner set will be the higher number.

Back-references WIthin an Expression

Y ou can refer back to amatch variable within an expression using the for-
mat “\n”. This, in effect, has the meaning “ match the same stuff that was

matched by the nth set of parentheses again”. This can be used to look for

repeating patterns. For a simple example:

(-H\1

matches any string that has any sequence of characters repeated twice.
For example, any of the following would match:

XX 123...123... _1 1 FredAndMaryFredAndMary

Match Variable References Outside an Expression

After the SREGEX P command has completed execution successfully (i.e.
the pattern matched), the values of the match variables are available for
useinthescript. Thisisdone by referring to the variables“1” through “9”
as &1 through &9.

For example, the following can be used to extract the numeric part of a
name:

Regular Expressions

The number is $IF($REGEXP(.*(\d+), $DEVNAME))&1SEND

In this case, if the name has no numeric part, nothing will be output. An
$EL SE clause on the $I F could be used to perform some other operation.

Differences From Unix Regular Expressions

For users familiar with Unix regular expressions, there are only a couple
of minor differences, imposed by the structure of a Scripter command
file:

B The” and $ operators that match the beginning and end of aline are
not implemented. In thisimplementation, the regular expression must
always match the whole subject string, so they are superfluous.

® A comma character “,” must be escaped when used in a regular
expression, because it will otherwise terminate the argument string to
the $SREGEXP command. |.e. If you need to match a comma, you
must put "\," in the regular expression.

Regular Expression Examples

This section offers a number of examples of using regular expressions for
error checking and for extracting or reformatting text data.

Checking for Numeric Data
Regular expression aone:
|-*\D.*
Sampl e script usage:
$IF(SREGEXP(] -*\D.*, $PINNUM))$SETVAR(Error, 1)$END

This expression matches any text string that is either empty (that is, zero
length) or contains any non-numeric character. This could be used, for
example, to check for invalid pin number data during netlist generation.
This example looks a bit strange because it starts with an "'[" alternation
operator that is supposed to work on two operands. In this case, the left
hand operand is nothing, or the empty string. The right hand operand of
the"[" is".*\D.*", in other words "any string of zero or more characters,
followed by a single, non-decimal character, followed by any string of
zero or more characters”.

Script Examples

Checking for Invalid Characters in Names
Regular expression aone:
[a-zA-Z_]+
Sample script usage:
$FIND $DEVICES $NOT($REGEXP([a-zA-Z0-9_71+, $DEVNAME))

This example makes use of the "[]" operator to list the allowable charac-
tersin adevice name, in this case letters, numbers and the underscore
character.

Extracting Data Fields
Regular expression aone:
([A-Za-z0-9_$\-]+).*
Sample script usage:
$1F($REGEXP(([A-Za-z0-9_$\-]+).*, $BUSNAME))&1$END

This example is making use of extra parentheses to assign parts of the
matched text to match variables. The"[A-za-z0-9_$\-]+" portion of the
expression matches any string of one or more of the characterslisted in
between "[" and "]". The parentheses around this part of the expression
cause the result of this portion of the match to be assigned to match vari-
able number 1. The remaining portion of the expression ".*" will match
all remaining charactersin the target string.

The script example shown was created to take bus names like
"DATAJ0,15]" and extract only the name from the front. In this case,
once the expression has matched, the script variable & 1 will have the
value of the portion of the text that matched the portion of the expression
in parentheses.

|
Script Examples
This section provides some detailed examples of report scripts. Toillus-

trate the use of various options, most of the following exampleswill refer
to this sample circuit:

Script Examples

+5V
J1 +5V
«_P 4 d ey
<<——| T 0.1uF ‘I‘ 0.1WF
Ground
L
u2
CEN/ 1{>°2
J1 U1l
17 74HCT163
6 cLk/ 3{>¢
N\
E
u2 I1
D3 1IN
D2 33
D1 23
DO 1] <
rd

CLR/

Take note of some of the characteristics of this circuit:

B Severad devices have the same name and are intended to be
considered as a single device in the reports.

B The connectors labeled "J1" each have a Part attribute entry "Molex
9-pin".

B The inverters labeled "U2" each have a Part attribute entry
"T4HCTO04".

B The capacitors C1 and C2 each have Part attribute entries " Tantalum"
and Value attributes "0.1uF".

B Thedevices Ul and U2 have Power and Ground attributes specifying
the standard power and ground pins.

Basic Netlist Formats

A netlist (i.e. alist of the signal connectionsin acircuit) can take one of

Script Examples

two general forms:

® A listing of the signals (or nets) making up the circuit with each
signal name followed by a list of the device pins connected to the
signal.

B A listing of the devices making up the circuit, with each device
followed by a list of the signals attached to each pin. This type is
discussed in alater section entitled " SPICE-type netlists'.

The first form (which we will refer to asasignal list) is generated by the
$SIGNAL S listing command, the latter using the $DEVICES command.
Thus, just about the simplest script that will produce a netlist consists of

just oneline, asfollows:

$SIGNALSS$SIGNAME $PINS

The keyword $SIGNALS specifies that a listing of the signalsin the
circuit isto be produced, but does not in itself specify the format of the
list. The text on the balance of the line determines the format of each
signal item. In this example, each line will consist of the signal name
($SIGNAME), followed by a blank, followed by a list of the pin
connections associated with this signal. The format of each pin item will
be in the default format "device-pin#". This can be overridden using the
$SIGPINFORMAT definition statement.

The output file generated from this file and the circuit in Fig. 1 will be as
follows:

unnamed U1-7 U1-10 U2-2
unnamed Ul-2 U2-4

DO J1-1 Ui1-14

D1 Ji1-2 U1-13

D2 J1-3 U1-12

D3 J1-4 Ul1-11

CLR/ J1-5 U1-1

CLK/ J1-6 U2-3

CEN/ J1-7 U2-1

Ground C1-? C2-? J1-8 U1-3 U1-4 Ul-5 Ul-6
+5V C1-? C2-? J1-9 U1-9

Note the following problemsin this netlist:

Severa unnamed signals are shown with the same label "unnamed".

Discrete component pins (e.g. C1, C2) are listed with a"?" for the pin
number, since no pin number was given on the diagram.

B Power and ground pins are not appearing.

Script Examples

.The following script addresses these problems and implements some
additional features:

$S1GSOURCE(Ground)
$SIGSOURCE(+5V) &Power
$AUTONUMBER(3)

$ASSIGNNAMES $SIGNALS

$SORT $SIGNALS $SIGNAME
$SIGNALS$S IGNAMESCOL (15)$P INS

This produces the following output file:

+5VC1-2 C2-2 J1-9 U1-9 Ul-16 U2-14
CEN/J1-7 U2-1

CLK/J1-6 U2-3

CLR/J1-5 U1-1

DO Ji1-1 Ul-14

D1 Ji-2 U1-13

D2 J1-3 U1-12

D3 Ji1-4 Ul-11

GroundC1-1 C2-1 J1-8 U1-3 Ul-4 Ul1l-5 Ul1-6 U1-8 U2-7
S00001U1-7 U1-10 U2-2

S00002U1-2 U2-4

Note the following features of this report:

The $SORT line causes the nets to be sorted by signal name.

The $ASSIGNNAMES line causes default names of the form S00001
to be assigned to any signals that are unnamed.

B The SAUTONUMBER format command assigns pin humbers to any
device with up to 3 pins.

B The $SIGSOURCE lines indicate that power and ground connections
should be extracted from attribute fields of the given names in each
device. Connections for the Ground net are extracted from the
attribute field with the same name. Connections for the +5V net are
extracted from the Power attribute field.

B The $COL keyword is used in the $SIGNALS line to set column
alignment and improve readability. Note that this will only appear
correctly on the screen if displayed with a fixed-space font such as
Courier or Monaco. Another aternative is to put a Tab character in
the file at that point (either with a literal tab character or using the
$TAB command), allowing tab settingsto be used in aword processor
to format the output.

Script Examples

Basic Bills of Materials

The simplest list of the devices making up acircuit is generated by the
following single-line script:

$DEVICES$DEVNAME

Given the sample circuit in Fig. 1, thiswill generate the following list:

Note that thereisno particular ordering to thislist and like-named devices
are not combined. Thefirst problem is fixed by using the $SORT com-
mand, as follows:

$SORT $DEVICES $DEVNAME
$DEVICES$DEVNAME

This generates:

Like-named devices can be combined into asingle report line by inserting
the command $COMBDEV SON. The following script also illustrates
how attribute parameters can be displayed on each line in fixed columns:

$COMBDEVSON
$SORT $DEVICES $DEVNAME
$DEV ICES$DEVNAMES$COL (20) &Part$COL(40)&Value

This produces the following output file:

Cl1 TantalumO.1lpF
C2 TantalumO.1lpF
J1 Molex 9-pin
Ul 74HCT163

U2 74HCTO04

Script Examples

| MPORTANT: Note that the COMBDEVSON flag does not actually combine
devices with the same name, but rather devices with the same sort
position. Since we sorted by device name, this has the desired effect.
This can be used to combine lines based on the contents of an attribute
field such as the "Part" entry. This is demonstrated in the following script,
which also adds column titles and a use count for each type.

$COMBDEVSON

$SORT $DEVICES &Part

Device Type$COL(20)Num. Used$COL(36)Value$COL(50)Refer-
ences

$DEVICES&Part$COL(25)$COUNTSCOL(36)&Val-
ue$COL (50) $DEVNAME

Note that we are now sorting by part name, so $COMBDEV SON means,
in effect, "combine devices with the same 'Part’ field into one line". The
$DEVNAME entry here may be multi-valued, since we may be
combining devices with different device names onto asingle line. If this
happens, the Scripter will list all values of DEVNAME associated with
the "Part" value on that line, as follows:

Device TypeNum. UsedValueReferences
74HCTO041 U2

74HCT1631 Ul

Molex 9-pinlJl

Tantalum20.1uFC1 C2

IMPORTANT: Since we are sorting by Part value, and not by name, itis
important that like-named devices have the same attribute values, other-
wise they will appear on different lines.

Exporting to Spreadsheets and Word
Processors

DesignWorks reports can readily be exported to spreadsheet programs
such as Microsoft Excel or word processors such as Microsoft Word to
take advantage of those programs formatting and data analysis capabili-
ties. Typical applicationsinclude:

m Creating formatted copy for presentations or permanent
documentation.

B Using spreadsheets to compute pricing, board area, power usage, or
other parameters of a design.

Script Examples

Export Format

In general, the important element in exporting data to either type of pack-
ageistabs. Spreadsheetstypicaly use tab charactersto separate fields
when importing text data, and word processors can make use of tabsto
provide adjustable column formatting. Use of blanks and the $COL oper-
ator in a script should be avoided, since blanks do not have a fixed width
in most Macintosh fonts and will result in inconsistent results.

Inserting Tabs

A tab character can be inserted anywhere in the report script and will be
passed directly to the output file. Consider the following sample compo-
nent list generator (based on the last examplein the previous section):

$COMBDEVSON

$SORT $DEVICES &Part

Device Type$TAB\Num. Used$TAB\Value$TAB\References

$DEVICES&Part$TABSCOUNTSTAB&Value$TABSDEVNAME

NOTE: The $TAB command has been used in this case to clarify where a

tab has been used. It is also possible to insert a literal tab character into
the file. The "\" backslash after $TAB in the title line is not absolutely
required in this case, but is good practice, both for readability and to
ensure that the following text does not get considered as part of the
command by the script parser.

Thisformat alows usto make use of the tab options in the word proces-
sor to improve the look of the report, as follows:

Device TypeNum. UsedValueReferences
74HCTO41 U2

74HCT1631 U1l

Molex 9-pinlJl

Tantalum20.1pFC1 C2

In cases where a single command causes multiple itemsto be placed in a
report, such as $PINS, the $I TEM SEPARATOR specification must be
used to insert tabs between itemsin the list. Thus exporting anetlist with
tab separators can be done with the following script (adapted from the
preceding section on netlists):

$S1GSOURCE(Ground)
$SIGSOURCE(+5V) &Power
$I1TEMSEPARATOR(t ab)

Script Examples

$AUTONUMBER(3)
$ASSIGNNAMES $SIGNALS
$SORT $SIGNALS $SIGNAME
$SIGNALS$S IGNAMEtab$P INS

The notation t ab indicates a tab character.

Page Separators

When exporting data to a spreadsheet, you will normally not want any
page breaks to be inserted in the data since they would confuse the
importing program. Page breaks can be disabled by setting the $SLINE-
SUSED and $PAGELENGTH format optionsto large values, as follows:

$LINESUSED (32000)
$PAGELENGTH(32000)

When exporting to aword processor, you can chose to use either of two
methods:

B Use the above settings and generate a continuous list, allowing the
word processor to determine the page breaks.

B Set SPAGELENGTH(0) and $LINESUSED(50) (or whatever number
suits your application) to force the Scripter to insert a form feed
character (page break) and a page header on each page.

Error Checking Examples

The Scripter can be used to check for various kinds of circuit errors such
as missing or overlapping names, missing attribute fields, unconnected
signals, etc. Making use of the SALERTX, $PROMPTx and $SELECT
commands, it is possible to create a script that checks for these errors
without even generating an output file.

Missing Attribute Fields

The following report script will check a circuit for any devices missing
thefield "SUPPLIER" and write out alist of the offending items:

$FIND $DEVICES $NOT(&SUPPLIER)
$SORT $DEVICES $DEVNAME?$DEVICES$SDEVNAME

By changing the $DEVICES command to select the devices instead of
reporting them you can have it report the errorsimmediately instead of
writing them to afile:

Script Examples

$REPORTOFF
$FIND $DEVICES $NOT(&SUPPLIER)
$DEVICES$SELECT

The $SREPORTOFF command is necessary because the $SDEVICES
command will generate a line terminator after each device line, even if
thereis nothing onit. Thisadded command prevents any file output from
being generated.

Unconnected Signals

Thefollowing script will create alisting of all signalswith zero or one pin
connections on them:

$FIND $SIGNALS SLT($NUMPINS,2)
$SORT $SIGNALS $SIGNAME
$SIGNALS$S IGNAME

Duplicate Pin Numbers

To be added. See $SAMEPINCOUNT.

Incorrect Name or Attribute Format

to be added. See $REGEXP.

Using the Scripter to Assign Names

A report script can be used to assign names to groups of devicesin acir-
cuit without actually generating areport. For example, the following
script assigns a name of the form "Cn" to all capacitorsin the circuit:

$FIND $DEVICES $TYPENAME(Cap*) $NOT $DEVNAME
$SORT S$DEVICES $PAGE $POSY $POSX
$ASSIGNNAMES $DEVICES $FORMAT(C1)

We first find all devices with a library type name beginning with the
letters "Cap" and not already named. We then sort the devices by page
number and position on the drawing. Then we assign the default names.
These names will initially be invisible, but can be made visible by using
the Browser tool.

Giving Priority to Nets
When a netlist isto be used to drive a PCB layout system, it is frequently

Script Examples

desirable to bring certain nets to the front of thelist to give them higher
routing priority. This can be done by inserting an attribute field into the
highest priority nets and sorting first on thisfield. Netswill appear in
ascending order of thevalueinthisfield. Netswithout any field specified
will appear last.

In the following example, the field PRIORITY with value O has been
inserted in the attributes for the net Ground in the sample circuit used in
the first sections of this chapter. A referenceis madeto thisfieldinthe
$SORT command in the script, as follows:

$SI1GSOURCE(Ground)
$SIGSOURCE(+5V) &Power
$AUTONUMBER(3)

$ASSIGNNAMES $SIGNALS

$SORT $SIGNALS &PRIORITY $SIGNAME
$SIGNALS$S IGNAMESCOL (15)$PINS

This gives the following results:

Ground Ci1-1 C2-1 J1-8 U1-3 Ul-4 U1-5 Ul-6 U1-8
+5V Ci1-2 C2-2 J1-9 Ul1-9 Ul-16
CEN/ J1-7 U2-1

CLK/ J1-6 U2-3

CLR/ Ji-5 Ul-1

DO Jil-1 U1-14

D1 J1-2 U1-13

D2 J1-3 U1-12

D3 Ji1-4 Ul1-11

S00001 Ul-7 U1-10 U2-2

S00002 ui-2 u2-4

Note that the Ground net is now listed before all others and the remaining
items are still sorted by name.

Devices by page number

This example uses a sort by attribute fields to make an index to locate
types used in adesign. Thisisan extract from amulti-page circuit in

which each device has afield called "type" specifying its vendor type
number. In addition, discrete components have afield called "Value"
with their component value. The following report script is used:

$COMBDEVSON

$SORT $DEVICES &Part &Value
TYPEt abVALUEt abPAGES
$DEVICES&Part$TAB&Value$TABSPAGE

This script produces the following results:

Script Examples

| MPORTANT:

TYPEVALUEPAGES

74HC04 1 2 3
74HC1931 3

RES 1/4W10K1 2
RES 1/4W20K1

Industry Netlist Formats

In this section we will illustrate how the various Report options can be
combined to produce standard netlist formats to interface with outside
PCB layout, simulation and other design programs on the Macintosh or
other machines.

The following examples are provided as illustrations only and may
not include all the format information needed to reliably interface with a
given external system. We have no control over the specifications for
third-party systems and these may change from time to time. The
standard scripts provided on disk with DesignWorks may differ from the
examples given here. Use a text editor to view these files directly for
more complete and up-to-date information.

SPICE-type Netlists

SPICE-based analog simulation programs read all their circuit structure
and simulation information from a text file, which must include the fol-
lowing:

A titleline.
Setup commands which set parameters for the simulation, with one

command per line. These usually begin with a".", such as ".tran" or

ac.

® Onelineof information per devicein thecircuit. Each line starts with
the device name (the first letter of which determinesitstype), alist of
the nodes attached to that device, then any parameters required for the
device.

B Anend marker line.

The order of these linesin the file is not significant, except that the first
lineisthetitleline, and thelast line must be".end".

A simplified SPICE report script contains the following commands:

Script Examples

$CREATEREPORT ($DESIGNNAME . IN)
$DESIGNNAME $DATE $TIME
&Spice

$DEVICES$DEVNAME $PINS &Spice
.end

These commands perform the following functions:

$CREATEREPORT ($DESIGNNAME.IN)—causes the string ".IN"
to be added to the name of the design file to create the default name
for the output file.

$DESIGNNAME $DATE $TIME—-create atitlelinein the output file
consisting of the circuit file name and the date and time at which the
report was generated.

& Spice—Copies the contents of an attribute field called Spice from
the design attributes (set up using Set Design Attributes command in
the Options menu). This is used to insert SPICE parameter lines
before the actual netlist.

$DEVICES$SDEVNAME $PINS & Spice—causes a list of devices to
be written into the file. Each line will contain the device name, alist
of the attached signals (nodes), followed by the contents of an
attribute field called Spice. Note that SPICE uses thefirst |etter of the
device name to determine its type. It is up to the user to name each
device appropriately.

The $PINS item lists the pin signalsin the order that the device pins were
defined in the DevEditor. Thereforeit isvery important that the device
libraries used to create the circuit have a pin order that matches SPICE's
requirements. The SPICE Devices library provided with DesignWorks
meets this requirement.

.end—inserts the actual text ".end" in the output file, which is the SPICE
termination marker.

Given this circuit;

Script Examples

WPLUS
w D2
YWLED ES
) 1k
1K
C&D WPLUS it WO2C
Gz R
WiITH _ WT1C 10K
RZ RE VRES
10K (1S
YIN a1 0z 10K
VOZE |
o R H] H] =1
10K, G
WM
FPULSELDY 12v 150 2u 2u Su 24u) o

VRES
PULSECOY 12w 2u 20 2u Su 24u)

the report script shown above generates this output file:

SPICE Demo Monday, August 10, 1992 11:05 AM
-TRAN _5US 26US UIC

-model MOD1 npn(bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns
cje=3pf cjc=2pf

+ va=50)

-model DIODE1 D

Q1 VvQiC VvQ1B O MOD1

R1 S00001 VQ1B 10K

R2 VQ1C VLED 1K

R5 VQ2C VPLUS 1K

R3 VQ2B VQ1C 10K

Q2 VvQ2C VQ2B 0O MOD1

D2 VLED VPLUS DIODE1

D1 VIN SO00001 DIODE1

R4 VQ1B VQ2C 10K

VPLUS VPLUS 0 12V

VIN VIN O PULSE(Ov 12v 15u 2u 2u 5u 24u)
VRES VRES O PULSE(Ov 12v 2u 2u 2u 5u 24u)
R6 S00002 VRES 10K

D3 S00002 VQ2B DIODE1

-END

Say, for example, you wished to assign arbitrary namesto the devicesin
your circuit without the restriction of using thefirst | etter to determine the
devicetype. Thiscould be done by placing afield in the attributes for
each device containing only the type letter, asin the following example:

Fieldvalue

Script Examples

SPTYPEV
SpiceAC 1

The script could then be modified as follows to insert this new parameter
in the netlist:

$DEVICES&SPTYPE$SDEVNAME $PINS &Spice

The SPICE name would then consist of the concatenation of the contents
of the SPTY PE field and the device name. Asan aternative to specifying
SPTYPE in every device, thisfield could be entered into the device
library entry for this type.

PCAD Format

A PCAD-format (PDIF) netlist for the sample circuit given at the begin-
ning of the Examples section would look like the following:

% Project Report Gen Circuit Sunday, March 11, 1992
{COMPONENT Report Gen Circuit.PCB {ENVIRONMENT Report Gen
Circuit} {DETAIL {SUBCOMP

{1 Tantalum C1

{CN 1 Ground 2 +5V

}

by
{1 Tantalum C2
{CN 1 Ground 2 +5V

}

T

{1 Molex 9-pin J1l

{CN 1 DO 2 D1 3 D2 4 D3 5 CLR/ 6 CLK/ 7 CEN/ 8 Ground 9 +5V
T

by

{1 74HCT163 U1

{CN 1 CLR/ 2 SIG3 3 Ground 4 Ground 5 Ground 6 Ground 7
SIG1 8 Ground 9 +5V 10 SIG1 11 D3 12 D2 13 D1 14 DO 15
SI1G2 16 +5V

}

}
{1 74HCT04 U2
{CN 1 CEN/ 2 SIG1 3 CLK/ 4 SIG3 7 Ground 14 +5V

}
}
13}
Note that thisisalisting by device, not by signal, similar to the SPICE

script illustrated previously. Each new device isintroduced by the "{I"
then the type, name, and list of attached signals follows.

This was generated using the following script:

$CREATEREPORT ($DESIGNNAME . PCAD) $PROMPT

Script Examples

$LINETERMINATOR $DOS

$SIGSOURCE(Ground)

$SIGSOURCE(PIus5V) &Power
$DESIGNSIGSOURCE(SigSources)

$AUTONUMBER(3)

$COMBDEVSON

$ASSIGNNAMES $DEVICES $FORMAT(UL)

$ASSIGNNAMES $SIGNALS $FORMAT(SIGL)

$SORT $DEVICES $DEVNAME

$DEVPINFORMAT $PINNUM $SIGNAME

% Project $DESIGNNAME $DATE

\{COMPONENT $DESIGNNAME.PCB \{ENVIRONMENT $DESIGNNAME\}
\{DETAIL \{SUBCOMP

$DEVICES\{I &Part $DEVNAMESNEWLINE\{CN $PINSSNEW-
LINEN}SNEWLINE\}

\F\\}

Note the following important features of this script:

The $CREATEREPORT command causes the default report file name
to be set to the name of the design with ".PCAD" appended. The user
will be prompted to verify or change the name before proceeding.

The SLINETERMINATOR command is being used to ensure that the
correct line terminator characters are inserted for a DOS- or
Windows-based package even if the script is run on a Macintosh.

The SIGSOURCE commands provide the names of power and
ground nets that can be specified in device attribute fields. Note that
in the above sample netlist, several power and ground connections are
shown that do not appear on the diagram. These are derived from
device attributes. Every device in the circuit will be searched for an
attribute field with any of the given names. If afield isfound, the list
of pin numbers it contains will be added to the net with the same
name. Notethat it ispossible to use an attribute field with a different
name than the net, if needed. See the SIGSOURCE command for
details.

The DESIGNSIGSOURCE command will allow the user to specify
other attribute fields as signal sources by placing the desired namesin
adesign attribute called SigSources.

The AUTONUMBER command specifies that devices with 3 or less
pins will have pin numbers assigned automatically even if they do not
appear on the diagram. This is intended to number discrete
components which do not have numbers showing on the diagram.

The COMBDEV SON command specifies that multiple devices with
the same sort value (in this case, the same device name) should be
combined into a single device entry.

Script Examples

The ASSIGNNAMES commands cause default names to be created
for any unnamed signals or devices. For devices, the nameswill be of
theform "Un" where "n" isan integer. For signas, the names will be
of theform"SIGn". The circuit is searched before assigning namesto
ensure that the new names do not match any existing ones.

The SORT command sorts the devices by name, for improved
readability.

The DEVPINFORMAT command sets the format for each device pin
inthefollowing $DEVICES listing. Inthis case, each entry will show
the pin number followed by a blank and the signal name.

The "% Project” text is not acommand, so it is transmitted directly to
the output file. The $DESIGNNAME command is replaced by the
name of the design being reported. The $DATE command is replaced
by the date the report was created.

In order to meet the PCAD format requirements, the
"COMPONENT" line must start with an opening brace "{". Since
this is the Scripter's comment character, it must be preceded by an
escape character "\". The backdash character does not appear in the
output. The rest of this line is straight text, except for the
$DESIGNNAME commands that are substituted as noted above.

The DEVICES line is the heart of the report. Everything following
the "$DEVICES" keyword on the line will be repeated once for each
devicelisted. In this case, each new device will be introduced by the
text "{I " (note the escape character required for each brace), followed
by the type name (extracted from an attribute field), the device name,
then aline terminator (NEWLINE). The second line of the entry will
contain the text "{CN " followed by alist of the pins attached to the
device. Each device entry will be terminated by two closing braces,
matching the opening ones at the beginning.

the whole file is terminated by three closing braces.

Cadnetix Format

The following script generates a netlist appropriate for a Cadnetix PCB
layout system:

$CREATEREPORT ($DESIGNNAME .NET) $PROMPT
$COLUMNS(80)

$S1GSOURCE(Ground)

$SIGSOURCE(+5V) &Power

$AUTONUMBER(3)

Script Examples

$BLANKREPLACE()

$COMBDEVSON

$PINFORMAT $DEVNAME $PINNUM
$CONTEND($)

$SORT $SIGNALS $SIGNAME
COPYRIGHT &Copyright &Company
DESIGNERS: &Designers

DATE: $DATE
FILE: $DESIGNNAME .NET
PARTS LIST

ID &ProjectiID

$SORT $DEVICES &Part
$DEVICES&Part &Package $DEVNAME
EOS

$SMAXITTEMSPERLINE(8)

$SORT $DEVICES $DEVNAME

NET LIST

$SIGNALS\NN $SIGNAME $PINS

EOS

Note the following unique features of this format:

The BLANKREPLACE command is used to ensure that blank
characters do not appear in any namesin thefile.

The SCONTEND command setsthe string " $" to be placed at the end
of any data line that is being continued to the next line because the
SLINEWIDTH or $SMAXITEMSPERLINE settings were exceeded.

a number of design attribute fields are referred to, including
& Company, &Designers, and & ProjectiD. These must be specified
in the Set Design Attributes command or they will not appear in the
report file.

the SMAXITEMSPERLINE command is used to specify how many
pin entries can appear on a single line before a continuation line is
Created.

the Scripter stops scanning for a keyword once it recognizes
something. For example, the escape character could have been
omitted from "$SIGNALS\NN" since the parser stops when it finds a
keyword. However, the script will be more clear and confusion will
be avoided to always separate keywords from following literal, non-
blank text with a backs ash.

This part of the manual lists all the command keywords defined in the
script language, in a phabetical order.

WARNI NG: Many of the keywords described here were added to the language
to support specific netlist formats or customer requirements. We do not
guarantee that all keywords and commands have been tested in every
possible combination. When using these commands to create critical
netlists or reports, please verify your results carefully before relying on
them!

For each keyword, the following information is provided:

m Keyword—The keyword as it should appear in the script. In some
cases, two or more related keywords are grouped together.

B Status—Thisindicates whether thisis a new feature in DesignWorks
4.0 or whether any changes have been made since 3.1.x.

B Synopsis—A short summary of the usage of the keyword, i.e. what
arguments it takes. Note that the following meta-characters are used
to indicate optional or alternative constructions in the synopsis:

¢ [] surround an optional item, e.g. $DATE[(format)].

¢ | indicates an adternative, for example $SORT
$DEVI CES|$SI GNALS.

¢ italics indicate an item that should be replaced by text
performing the given function, e.g. msgText will be replaced by
the actual argument text.

¢ bol d type indicates literal text that should be included exactly
as given.
B Returns—A description of the "return value" of the keyword, i.e.
what value will get substituted for it in the output file. N.A. (not
applicable) indicates that this keyword has no value.

B Type—This will be either "Data’, "Action", or "Definition". This
distinction determines how the keyword is handled if it appears by
itself on a line. If aline of the script contains only Definition or

Action keywords, then no line terminator is written out to the file. If
the line contains one or more Data keywords, then the line is
considered to be output data and a line terminator will be written out
after all data generated by the keywords.

B Where—This indicates where the keyword can be used. The
following locations are specified:

Top Level The keyword must be on a line by itself, starting
in column 1. This keyword can operate success-
fully without any current design.

Top Level - The keyword must be on a line by itself, starting
Design in column 1, and there must be a current design
available in order for the keyword to obtain the
data necessary to calculate its value or perform
its function.

Script The keyword can be in any executed part of the
script, i.e. not in a value mapping table or other
areas that are interpreted as raw data. The key-
word does not need to refer to any object to per-
form its function.

Script - De- As for Script, except that there must be a current
sign design.

Script - Device | As for Script, except that there must be a current
device at the position the keyword is at in the
script.

Script - Signal | As for Script, except that there must be a current
signal at the position the keyword is at in the
script.

Script - Pin As for Script, except that there must be a current
pin at the position the keyword is at in the script.

Notation of Changes

There are many other changes, large and small, that are noted in the In the
following reference sections. In order to help you discover and make use
of these changes, each keyword described here will be flagged with one
of the following notations:

New in 4.0—Marks commands that are completely new.

Updated in 4.0—Marks commands that have new options or uses.

New in 3.1.x—Marks commands that were added or updated after the
initial 3.0 release, i.e. they are different from the description given in

the 3.0 manual, but were described in the "New Report Features'
technical note.

Obsolete—Marks commands that are till supported but the same
function can now be obtained using more general new features.

No change in 4.0—Marks commands with no significant change in
meaning or usage in the new version.

Keyword $ALERT1/$ALERT2

Status Newin4.0

Synopsis $ALERT1(message)

Returns Boolean

Type Data

Where Script

Descri ption Displays an alert box to the user with the given message text. $ALERT1 dis-
plays only one button, OK. $ALERT2 displays two buttons, OK and Cancel.
Returns TRUE for OK, FAL SE for Cancel.

Example $ALERT1(S$TIME is too late for this kind of thing. Go
homel)

NOTE: If SALERTX is used on a line by itself, it will insert the value "1" into
the output file if OK is pressed, which may not be desired. You can
prevent by enclosing the whole thing in a $SNULL command, as in:

$NULL($ALERTLI(Warning: Some value changes were made.))
P See also $PROMPTI1/$PROMPT2.

Keyword $ALIGNCOLSON/$ALIGNCOLSOFF

Status Nochangein4.0

Synopsis $ALI GNCOLSON
$ALI GNCOLSOFF

Returns N.A.

Type Definition

Where ToplLeve

Description Turns on/off automatic column alignment.

Example $ALIGNCOLSON

NOTE:

When ON causes extra blanks to be inserted between netlist or compo-
nent list entriesto force column alignment. Thisimproves readability
when used with a fixed-space font such as Monaco or Courier. If
SALIGNCOL S is OFF, then the item separator will be atab if
$TABFIELDSisON, or asingle blank otherwise. Default is OFF.

You may have to insert a number of blanks at the front of
continuation lines using $CONTSTART to force correct alignment of the
first item in each continuation line.

The column spacing that is used by the $ALIGNCOL SON option is set
by the $SPA CE command.

» See also: $SPACE.

Keyword $AND
Status Newin4.0
Synopsis $AND(stringl, string2)
Returns Boolean
Type Data
Where Script
Description Performsalogical AND operation on its two arguments. Any non-null string
in an argument is considered TRUE.
Example $IF(SAND(&X1, &X2))&X1/&X2$ELSE&LX1&X2$END
Keyword $ASSIGNINSTNAMES
Status Nochangein4.0. Changedin 3.1.5.
Synopsis $ASSI GNI NSTNAMVES $DEVI CES|$SI GNALS format
Returns N.A.
Type Action
Where Toplevel - Design
Description Assigns default names to the InstName field of any device or signal not hav-

ing one.

Example

$ASSIGNINSTNAMES $DEVICES

The $ASSIGNINSTNAMES command has exactly the same format and
operation and the $ASSIGNNAMES command except that it operates on
the InstName field instead of the Namefield. It isintended for use when
producing flattened netlists from designs created in the Physical Hierar-
chy mode. The Physical Hierarchy mode allows the InstName field to
take on adifferent value for each physical device represented by adesign,
and so can be made unique throughout a hierarchical design. By contrast,
the Name field is only guaranteed to be unique within a single circuit
block and will be the same inside al instances of the same sub-circuit.

» For a complete format summary, see “$ASSIGNNAMES” on page 67.

Keyword

$ASSIGNNAMES

Status

No changein 4.0. Changedin 3.1.5.

Synopsis

$ASSI GNNAMVES $DEVI CES|$SI GNALS [$REASSI GN| format

Returns

N. A.

Type

Action

Where

Top level - Design

Description

Assigns default names to the Name field of any device or signal not having
one.

Example

$ASSIGNNAMES $DEVICES $REASSIGN

The $ASSIGNNAMES command is used to apply names to unnamed
devices or signalsin the circuit before alisting is generated. If thisis not
done, any object which has not been named (either manually or by the
auto-naming or packaging features) will appear as "unnamed" in a net or
component list.

The names assigned by $ASSIGNNAMES will be invisible but perma-
nently associated with the object. They can be made visible either using
the Attributes command associated with the object or the Browser tool.

Note that $A SSIGNNAMES can be used in conjunction with the $FIND
command to assign names to selected subsets of devices, such as all resis-
tors, etc. See the Examples section for more information.

The "object type" specification (either "$DEVICES' or "$SIGNALS") is
mandatory, all other items are optional.

Note that the same format and options apply to the $SASSIGNINST-

NAMES command, mentioned elsewhere in this note.
Note the following examples:

$ASSIGNNAMES $DEVICES $TYPENAME $FORMAT(format) &pre-
fixField $REASSIGN
$ASSIGNNAMES $SIGNALS &prefixField $REASSIGN

The $REASSIGN keyword is optional and indicates what to do if the
object in question already has a program-assigned name. If SREASSIGN
does not appear, any existing name will be kept, regardless of how it was
created. If SREASSIGN appears, then all program-assigned names
(whether auto-assigned by the Schematic tool while the circuit was being
edited, or generated by a previous report) will be removed and replaced
with new, sequentially-assigned names.

The $TYPENAME, $FORMAT and & prefixField items are all optional
and specify how anameisto be generated. If none of these items appears
on the line, then the default format will be used. For devices, thisisthe
contents of the prefix field plus an integer. For signals, it isthe specified
default signal prefix plus an integer.

$TYPENAME indicates that the device's type name (i.e. the name that
appears in the Parts palette) isto be used as a prefix. If a$FORMAT
appears aswell, or if the default format is used, the type name is prefixed
to the name that would be generated by the SFORMAT alone.

& prefixField specifies an attribute field to be used asa sourcefor aprefix.
If al three format specifications are given, all three prefixes will be con-
catenated.

NOTE: In normal circuitstances, we do not recommend specifying the
following $FORMAT option in $ASSIGNNAMES or $ASSIGNINSTNAMES
when assigning to signals. If you specify a format that is anything other
than the default, the Schematic tool will assume these are fixed, user-
assigned names and will not reassign them during editing operations.
This can result in errors if a section of schematic is copied, creating
duplicate names.

$FORMAT specifies aformat string consisting of an alphabetic part fol-
lowed by a numeric part. The aphabetic part will be used as the prefix
for every name generated. The numeric part is used simply to specify the
number of digitsto be used. For example, the default format "D00000"
indicates that all names are prefixed with "D" and the numeric part will

have afixed length of 5 digits. Extradigits are added to the numeric part
if needed, so "UQ" will generate U123 for the 123rd device.

NOTE: Pre-3.0 versions of DesignWorks also supported a $PERM keyword

anywhere in the $ASSIGNNAMES line. This indicated that the assigned
names were to be made permanent after the report generation was
completed. This is no longer an option. All name assignments remain
after the report is generated. The $PERM keyword is ignored.

P See also: SUNNAMEDDEVS $UNNAMEDSIGS $ASSIGNINSTNAMES

Keyword

$SATTRNUM

Status

Obsoletein 4.0

Keyword

$AUTONUMBER

Status

No changein 4.0

Synopsis

$AUTONUMBER(number of pins)

Returns

N. A.

Type

Definition

Where

Top-Level

Description

Specifies anumber of pinslessthan or equal to which adevice will have pin
numbers automatically assigned in the report output for any referenceto
$PINNUM.

Example

$AUTONUMBER(3)

Will automatically provide a pin number whenever a$PINNUM command
appears for an unnumbered device pin on adevice which has 3 or less pins.

Any device with less than or equal to the number of pins specified will
have pin numbers automatically substituted if the SPINNUM keyword is
used and no pin numbers are present in the circuit file. Thisoptionis
intended to provide pin numbers for discrete components in a circuit,
since they do not normally have pin numbers on adiagram. The default
number iszero. Note that this option does not make any change to the cir-
cuit dataitself, but is simply a substitution that is made during report gen-
eration.

Keyword

$BLANKREPLACE

Status

No changein 4.0

Synopsis

$BLANKREPLACE(String)

Returns

N. A.

Type

Definition

Where

Top-Level

Description

Specifies astring of characters that will be substituted for a blank in any
device or signal name.

Example

$BLANKREPLACE()

Will replace each blank in a name with an underscore character.

The $BLANKREPLACE item specifies astring of characters that will be
substituted for ablank in any device or signal name. Thisisdoneto
accommodate systems which cannot accept blanks in names.

» See also: $CHARMAP.

Keyword

$BREAK

Status

New in 4.0

Synopsis

$BREAK(blockName) $DEVI CES|$SI GNALS [$FI RSTON/ OFF]
format

Returns

N. A.

Type

Definition

Where

Top-Level

Description

Sets up avalue break condition for a subsequent $DEVICES or $SIGNALS
listing.

Example

$BREAK(PartsHdr) $DEVICES &Value

Will insert the contents of block "PartsHdr" at the front of the next
$DEVICES listing and again every time & Value changes.

The $BREAK command is used to create listings such as partslistsin
which atitle block or page break isinserted between groups of lines that
are related by some value. For example, you could create alisting in
which capacitors are grouped together, resistors are grouped together, etc.

Following is atypical example of usage of this feature:
$DEF INEBLOCK (PartsHdr)
-- Here are the parts of type &Function

$END

$SORT $DEVICES &Function $DEVNAME
$BREAK(PartsHdr) $DEVICES &Function
$DEVICES$DEVNAME &Value

Before each line is generated, the Scripter evaluates the format string, in
this case "& Function" and compares the current value to the value in the
last line. If the valueis different, the contents of the block "PartsHdr" are
evaluated and written to the output.

Notes on the $BREAK command:

m Before performing the listing, you must have specified a $SORT on
the same value that is used for the break, or the listing will not make
much sense. This is not checked by the program. If you have not
sorted, the program will smply insert a header whenever two
adjacent lines have different values of the format string.

® Whilethe header block is being interpreted, the "current object” isthe
device or signal that is about to be listed. Thus, if you make reference
to an attribute or command that refers to an object, it will use the
values that would be in effect for the next line.

B You can control whether a header isinserted before the first line using
the $FIRSTON/$FIRSTOFF keywords. See below.

B A break remains in effect for al subsequent listings once it is
established. To turn if off again, you can specify anull format string,
asin:

$BREAK(Part sHdr) $DEVI CES

Optional Header Insertion Before First Break

The optional keywords $FIRSTON/$FIRSTOFF can be used to control
whether a break header isinserted before the start of the listing. If the
$FIRSTON keyword appears immediately after $DEVICES or $SIG-
NALS, then the break header will be inserted immediately before the first
device or signd line. If $FIRSTOFF appears, no header will be inserted
until the first value change. The default is $FIRSTON.

» See also $HEADER.

Keyword

$BUSCLOSE

Status

New in 4.0

Synopsis

$BUSCLOSE(string)

Returns

String

Type

Data

Where

Script - signal

Description

Returns the given string if the current object isin anamed bus.

Examples

$SIGNALS$BUSNAME () $SIGNAME$SBUSCLOSE(T)

Thiswill generate alist of the signalsinthecircuit. If asignal isin abus, then
it will appear as"busNane[si gNane] ", otherwiseit will just appear as
"si gNanme".

> See also $BUSNAME.

Keyword

$BUSNAME

Status

No changein 4.0

Synopsis

$BUSNAME[(suffixStr)]

Returns

Text

Type

Data

Where

Script - signal

Description

Returns the name of the bus associated with the current object. An optional
suffix string allows this keyword to be used with $SIGNAME to provide a
compound name when the signal isin abus.

Examples

$S1GNALS$BUSNAME() $SIGNAME

Thiswill generate alist of the signalsin thecircuit. If asignal isin abus, then
it will appear asbusName_si gNane, otherwise it will just appear assi g-
Narme.

The naming rulesin DesignWorks allow signals with the same name to
exist in multiple different busses without being connected. This means
that any report output referring to $SIGNAME risks being ambiguous is
busses have been used in the design. For thisreason, it is best to qualify
signal names with the name of any enclosing bus. $BUSNAME allows
this by inserting the name of any enclosing bus and an optional separator
character in the output.

Because the given separator string is only inserted if the bus nameis non-
null, $BBUSNAME can always be inserted in front of the $SSIGNAME
command without interfering with non-bussed signals. $BUSNAME can
also be used in conjunction with $BUSCL OSE to give names that are
enclosed in parentheses or similar separators. For example:

$S I GNALS$BUSNAME (<) $S I GNAME$SBUSCLOSE (>)

will generate signal names of the form DATABUS<DO>. To take this
example one step further, note how we can use a regular expression to
create a vector notation for signal names with a numeric component (note
that this must all appear on one line in the script):

$IF(SAND(SBUSNAME, $REGEXP(\D*(\d+), $SIGNAME))) $BUS-
NAME<&1>$ELSE$S I GNAMESEND

For asignal called A13 in a bus called ADDR, this will generate
ADDR<13>. For non-bussed signals, it will simply output the signal
name.

P See also $BUSNAMEON/$BUSNAMEOFF.

Keyword

$BUSNAMEON/$BUSNAMEOFF

Status

New in 4.0

Synopsis

$BUSNAVEON[(prefixStr[, suffixStr]) |
$BUSNANVECFF

Returns

N. A.

Type

Definition

Where

Top-Level

Description

Causes the name of the enclosing bus to be automatically inserted whenever
$SIGNAME is used referring to asignal in abus.

Examples

$BUSNAMEONNL,\DD)

Specifies that all references to the $SIGNAME of a bussed signal will now be
listed as busName[sigName]. Note: The escape (backslash) character used in
front of each of the argumentsis not strictly necessary in this case but is used
to clarify that these are intended as literal text.

If the bus exists, the prefixStr text is inserted immediately after the bus
name and the suffixStr text isinserted immediately after the signal name.
This setting remains in effect for al listings until a$BUSNAMEOFF is
encountered.

P See also $BUSNAME/$BUSCLOSE.

Keyword

$BUSPINCLOSE

Status

New in 4.0

Synopsis

$BUSPI NCLOSE(string)

Returns

String

Type

Data

Where

Script - pin

Description

Returns the given string if the current pin isan internal pininside abus pin.

Examples

See $BUSPINNAME

P See also $BUSPINNAME.

Keyword

$BUSPINNAME

Status

No changein 4.0

Synopsis

$BUSPI NNAME[(suffixStr)]

Returns

Text

Type

Data

Where

Script - pin

Description

Returns the name of the bus pin associated with the current businternal pin, or
null if the current pinisnot abusinternal pin. An optional suffix string allows
this keyword to be used with $PINNAME to provide a compound name when
thepinisinabus.

Examples

$DEVP INFORMATS$BUSP INNAME (D) $P INNAME$BUSP INCLOSE(])

This setsthe format for apin listing so that if apinisinabus pinit will appear
as"busPi nName[pi nNane] ", otherwise it will appear as"pi nNane" .

The naming rulesin DesignWorks allow pins with the same nameto exist
in multiple different bus pins without being connected. This means that
any report output referring to $PINNAME risks being ambiguousiis bus
pins have been used in the design. For thisreason, it isbest to qualify pin
names with the name of any enclosing bus pin. $BUSPINNAME allows
this by inserting the name of any enclosing bus pin and an optional sepa-
rator character in the outpuit.

Because the given separator string is only inserted if the bus pin nameis
non-null, $BUSPINNAME can aways be inserted in front of the $PIN-
NAME command without interfering with non-bussed pins. $BUSPIN-
NAME can aso be used in conjunction with $BUSPINCL OSE to give
names that are enclosed in parentheses or similar separators.

» See also: $BUSNAME, $BUSPINCLOSE.

Keyword $CALLTOOL

Status Newin4.0

Synopsis $CALLTOOL(toolName, argumentString)
$CALLTOOL (toolName)

Returns Boolean

Type Data

Where Script (Note: Whether or not an object is required depends on the tool)

Description Transfers control to another DesignWorks tool (MEDA modul€) and passes
some argument information. Returns TRUE if the tool returns success,
FALSE otherwise.

Examples $CALLTOOL(Prompter, &FileName)

Calls the Prompter tool and passes the contents of the FileName attribute or
variable as an argument.

This command was implemented specifically to allow the Scripter to
work with the Prompter, but can also be used to invoke any other tool.
The effect of thiscommand is the same as if the tool was invoked by
selecting itsnamein the Tools menu. Note that the "toolName" argument
that is the string known as the tool’ s "alias" that is hard-coded when the
tool is created. In most cases these are the same, but they may be differ-
ent if any file names have been changed or if DesignWorks has been
localized.

Keyword

$CHANGECOUNT

Status

No changein 4.0

Synopsis

$CHANGECOUNT

Returns

Decimal integer.

Type

Data

Where

Script - Design

Description

The number of changes (i.e. editing operations) performed on the circuit since
it was created, represented as a decimal integer. This number can be used to
check for matching versions of acircuit file.

Example

$1F($SNE($CHANGECOUNT, &OldChange))
$SETATTR(&OIdChange, $CHANGECOUNT)
SNULL($ALERT1(The design has changed!))
$END

Thiswill display an alert if the design has been edited since the last check.

Keyword

$CHARMAP

Status

New in 4.0

Synopsis

$CHARMAP(blockName, string)

Returns

Text

Type

Data

Where

Script

Description

Used to map the characters making up a string using a predefined table.

Example

$DEF INEBLOCK(PkgTable)

) _DOT_
/ _SLASH_
& _AMPERSAND_

$END
$DEVICES$CHARMAP(CharTable, $DEVNAME)

Thiswill output device names, mapping characters according to the given
table. For example, aname"U1.1" will beoutput as"U1 DOT_1". Notethat
the white space shown in this example is representing a single tab character.
Blanks do not count as separators and may be included in the values.

This command allows you to map characters in strings by looking them
up in atable. Thiscan allow you to transate data for use in systems that

may have a more restricted character set.

The $CHARMAP function uses the same table format as the SMAP com-
mand, but differsin that it operates on one character of the input string at
atime. Thevauesin theleft hand column of thetable (i.e. before the sep-
arating tab) must be single characters, whereas the valuesin the right
hand column can be any string. This command operates by taking each
character in succession from the input string, matching it against a charac-
ter in the left hand column, and replacing it by the corresponding string in
the right hand column. If amatch is not found, the input character is
passed through to the output without modification. That is, only charac-
tersthat are enumerated in the left column will be modified.

Note these additional points regarding the $CHARMAP command:

m [f astring with more than one character appears in the left column,
only thefirst character is used as a match value.

B If an empty string appears in the left column (i.e. a tab or line
terminator is found immediately), it isignored.

® If you want to match with unprintable ASCII characters, you can use
the ~ notation described in “Control and Escape Characters’ on
page 13.

B Specia characters like backslash "\" or the open comment "{" can be
mapped by preceding them with a backslash.

P See also: $MAP and “Mapping Table Format for $MAP, $CHARMAP
and $VERIFY” on page 133.

Keyword $CHECK

Status Obsoletein 4.0. Use $IF and $ALERT.

Keyword

$CHECKSUM

Status

New in 4.0

Synopsis

$CHECKSUM

Returns

Decimal integer.

Type

Data

Where

Script - Device

Description

Returns the checksum of the device type associated with the current object.

Examples

$DEVICES$DEVNAME $CHECKSUM

Will generate alisting of all devicesin a circuit with their associated check-
sum.

The checksum of adevicetypeisa program-generated 32-bit value which
is generated from arandom number each time adevice type (i.e. alibrary
symbol definition) is created or modified. It isused to distinguish
between different versions of a symbol with the same name. Thisvalueis
not normally of interest to the user, but it can be useful for error checking
or locating cases where two device types of the same name have been
used in adesign inadvertently.

Keyword

$CHILDSIGNAME

Status

No changein 4.0

Synopsis

$CH LDSI GNAME

Returns

Text

Type

Data

Where

Script - Pin

Description

If the current pin is associated with a device that has a subcircuit, then this
keyword returns the name of the signal attached to the corresponding port in
the subcircuit. 1f the device has no subcircuit, then this simply returns the
name of the pin. Thisisintended specifically for usein generating netlist for-
mats that pin-to-port associations through the name of the signal in the subcir-
cuit, for example SPICE.

Examples

$DEVPINFORMAT $CHILDSIGNAME
$DEVICES\.SUBCKT $TYPENAME $PINS

Will generate a".SUBCKT" macro definition header line in for a SPICE-for-
mat netlist.

Keyword

$CIRCUITNAME

Status

Changedin 4.0

Synopsis

$CI RCUl TNAME

Returns

Text

Type

Data

Where

Script - Any object

Description

This returns the name of the circuit associated with the current object.

Examples

$DEVP INFORMAT $CHILDSIGNAME
$DEVICES\.SUBCKT $TYPENAME $PINS

Will generate a".SUBCKT" macro definition header line in for a SPICE-for-
mat netlist.

This keyword isintended for use in hierarchical designsto get the name
of the circuit associated with the current object. The following rules
determine the value that is returned:

m |If the current object is itself, or is inside, the top-level circuit in a
hierarchical design, then this is the design name and is the same as
$DESIGNNAME.

m If the circuit is a subcircuit and the design is in Physical hierarchy
mode, then the hierarchical path to the circuit is returned.

m [f the circuit isasubcircuit, it is not open for editing, and the design is
in Pure mode, the a name derived from the type name is returned.

m [f thecircuit is a subcircuit that is open for editing, and the design is
in Pure mode, a complete path is returned, asin Physical mode.

NOTE: In earlier versions of DesignWorks, $CIRCUITNAME was equivalent

to $DESIGNNAME in all cases.

Keyword

$CLEARERRORBIT

Status

New in 4.0

Synopsis

$CLEARERRORBI T(bitNum)

Returns

N. A.

Type

Action

Where

Script - Any object

Description

Clears the given bit number in the binary error set represented in the object’s
"OKErrors' attribute field.

Examples

$DEVICESSIF(SALERT2(Remove ""Mark as OK™ setting in
$DEVNAME?))$CLEARERRORBIT(7)$END

Will prompt the user if it's OK to remove the "Mark as OK" setting on the
each device.

This call is one of aset of commands designed to implement a"Mark as
OK" feature in error checking scripts.

P> See the description of this feature under “Implementing Mark as OK in
Error Checking Scripts™ on page 26.

P See also: $SETERRORBIT, $ERRORBITON/OFF, $CLEARERRORS.

Keyword

$CLEARERRORS

Status

New in 4.0

Synopsis

$CLEARERRORS

Returns

N. A.

Type

Action

Where

Script - Any object

Description

Setsthe object’s "OKErrors' attribute field to null.

Examples

$DEV ICES$CLEARERRORS
Will remove all "Mark as OK" settingsin all devices.

This call is one of aset of commands designed to implement a"Mark as
OK" feature in error checking scripts.

P See the description of this feature under “Implementing Mark as OK in
Error Checking Scripts” on page 26.

P See also: $SETERRORBIT, $ERRORBITON/OFF, $CLEARERRORSBIT

Keyword

$CLOSECIRCUIT/$CLOSEDESIGN

Status

No changein 4.0

Synopsis

$CLOSECI RCUI T
$CLOSEDES| GN

Returns

N. A.

Type

Action

Where

Top level - design

Description

Closes the current design, exactly asif the user had selected the Close Design
menu command.

Examples

$CLOSEDESIGN

Keyword

$CLOSEREPORT

Status

No changein 4.0

Synopsis

$CL OSEREPORT

Returns

N. A.

Type

Action

Where

Top level

Description

Closes the current report file.

Examples

$CLOSEREPORT

The $CLOSEREPORT command causes the current report output file to
be closed. This can be followed by another SCREATEREPORT com-
mand to create another output file, thus allowing a single script file to
generate multiple report files. The output fileisnormally closed automat-
icaly at the end of the script file, so this command is only necessary to
create multiple output files. If $CLOSEREPORT is not followed by a
$CREATEREPORT command, and subsequent listing commands
attempt to write output data, then the user will be prompted to provide a
name for a new output file.

Note that report files can be "nested” to any desired depth. 1.e. if you do
multiple successive $SCREATEREPORT commands without intervening
$CLOSEREPORTS, output will be directed to thefile created by the most

recent one. When it is closed, subsequent output will be directed to the
next most recent one, etc.

Keyword

$CLOSETRANSCRIPT

Status

New in 4.0

Synopsis

$CLOSETRANSCRI PT

Returns

N. A.

Type

Action

Where

Top level

Description

Closes the current transcript file.

Examples

$CLOSETRANSCRIPT

This command closes the current transcript file, or does nothing if no
transcript fileis open. If no transcript file remains open, any subsequent
uses of SWRITETRANSCRIPT will have no effect until another fileis
created using $SCREATETRANSCRIPT.

Note that transcript files (like normal output files) can be "nested" to any
desired depth. I.e. if you do multiple successive $SCREATETRAN-
SCRIPT commands without intervening $CL OSETRANSCRIPTS, output
will be directed to the file created by the most recent one. Wheniitis
closed, subsequent output will be directed to the next most recent one, etc.

P See also $CREATETRANSCRIPT.

Keyword

$COL

Status

No changein 4.0

Synopsis

$COL(N)

Returns

Text

Type

Data

Where

Script

Description

If the current position in alineisless than N spaces from the left hand
end then blanks are inserted until the Nth column isreached. If the
output is already at or past the Nth column, nothing is output. For
instance $COL (20) will force any output to be indented to the 20th
column of each line.

Examples

Name$COL(20)Part Type$COL(40)Package Code
$DEV I CES$DEVNAMES$COL (20) $TYPENAMESCOL (40)&Package

Will generate a simple bill of materials with items aligned at column 20 and
40.

Note that the column alignment generated by $COL(n) is strictly based
on character count, and so will depend on using a fixed-space font to gen-
erate printed output that is correctly aligned. If you intend to transfer the
datato aword processor or spreadsheet for printing, it will probably be
more appropriate to use tab separators between columns.

» See also $TAB.

Keyword

$COMBDEVSON/$COMBDEVSOFF

Status Nochangein4.0
Synopsis $COVBDEVSON
$COVBDEVSOFF
Returns N.A.
Type Definition
Where Top-Leve
Description When ON, causes any subsequent $DEVICES listing to merge all devices
with the same sort value onto one line of output. The default valueis OFF. If
a$DEVICESIisting is requested with $COMBDEV SON and no sort, awarn-
ing message will be issued.
Examples $SORT $DEVICES &Part

$COMBDEVSON
$DEV ICES&Part$TAB$SDEVNAME

Thiswill produce asimple bill of materials with each line showing the part
name followd by alisting of the devices with that part type. If $COMBDEV-
SON was not used, the output would contain one line per device with only a
single name on each line.

» More information on sorting and merging can be found in “Sorting and
Merging” on page 21.

Keyword

$COMBPINSON/$COMBPINSOFF

Status

No changein 4.0

Synopsis

$COVBPI NSON
$COVBPI NSOFF

Returns

N. A.

Type

Definition

Where

Top-Level

Description

When ON causes multiple pin connections on the same device to to be com-
bined without repeating the device name. The default is OFF. For example:
With $COMBPINSON: 1C1-2,5,6,12

With $COMBPINSOFF: IC1-2 IC1-5 IC1-6 1C1-12

Examples

$COMBP INSON

Keyword

$COMBSIGSON/$COMBSIGSOFF

Status

No changein 4.0

Synopsis

$COVBS| GSON
$COVBS| GSOFF

Returns

N. A.

Type

Definition

Where

Top-Level

Description

When ON, causes any subsequent $SIGNAL S listing to merge all signalswith
the same sort value onto one line of output. The default valueis OFF. If a
$SIGNALS listing is requested with SCOMBSIGSON and no sort, awarning
message will be issued.

Examples

$SORT $SIGNALS $PAGENUM
$COMBSIGSON
$SIGNALSSPAGENUMSTABSS I GNAME

Thiswill produce alist of signals by page number with one line per page.

» More information on sorting and merging can be found in “Sorting and
Merging” on page 21.

Keyword

$CONTEND

Status

No changein 4.0

Synopsis

$CONTEND(String)

Returns

N. A.

Type

Definition

Where

Top-Level

Description

This command specifies a string to be added at the end of any line that will be
continued on the next line due to the line width or item count being exceeded.

Examples

$CONTEND(+)

» See also: $CONTSTART.

Keyword

$CONTREPEATON/$CONTREPEATOFF

Status

No changein 4.0

Synopsis

$CONTREPEATON
$CONTREPEATOFF

Returns

N. A.

Type

Definition

Where

Top-Level

Description

This command specifies that the last item generated by a repeating command

on the current line should be repeated on any continuation line. Thisis specif-
icaly intended for some netlist formats that use the repetition of apinitemto
indicate a continuation line.

Examples

$CONTREPEATON

Keyword

$CONTSTART

Status

No changein 4.0

Synopsis

$CONTSTART(string)

Returns

N. A.

Type

Definition

Where

Top-Level

Description

This command specifies astring to be inserted at the start of any continuation
line generated due to the line width or item count being exceeded.

Examples

$CONTSTARTD(+)
Thiswill insert a"+" continuation character, typical of SPICE-based netlist
formats.

» See also: $CONTEND.

Keyword

$COUNT

Status

No changein 4.0

Synopsis

$COUNT

Returns

Decimal integer

Type

Data

Where

$DEVICES or $SIGNALS listing

Description

This keyword returns the number of different Name values held by devices or
signals merged on the current line. Thisisintended for usein flat PCB
designsin which the package assignment is stored in the Name field. In this
case $COUNT in effect returns the number of physical devices represented by
thisline.

Examples

$SORT $DEVICES &Part

$DEVICES&Part $COUNT

Thiswill produce alisting showing the number of each part type required by
the current design. Devices with multiple gates per package will count as 1
because they have the same value in Name.

» For a corresponding count in Physical hierarchy designs, see
$COUNTINST.

Keyword

$COUNTINST

Status

No changein 4.0

Synopsis

$COUNTI NST

Returns

Decimal integer

Type

Data

Where

$DEVICES or $SIGNALS listing

Description

This keyword returns the number of different InstName values held by
devices or signals merged on the current line. Thisisintended for use in phy-
scial mode PCB designs in which the package assignment is stored in the Inst-
Namefield. In this case SCOUNTINST in effect returns the number of
physical devices represented by thisline.

Examples

$SORT $DEVICES &Part

$DEVICES&Part $COUNTINST

Thiswill produce alisting showing the number of each part type required by
the current design. Devices with multiple gates per package will count as 1
because they have the same value in InstName.

» For a corresponding count in Flat mode designs, see $COUNT.

Keyword

$COUNTVALUES

Status

New in 4.0

Synopsis

$COUNTVAL UES(string)

Returns

Decimal integer.

Type

Data

Where

Script - any object

Description

When multiple objects with the same sort value are merged on the same line,
any object-based value, such as $SDEVNAME, could generate multiple differ-
ent values. Thiscommand provides a count of the number of values generated
by the command string given as its argument.

Examples

$SORT $DEVICES &Part
$COMBDEVSON
$DEVICES&Part $COUNTVALUES($DEVNAME)

This script will list all part typesin the circuit with a count of the number of
different usages of each type. Thistakesinto account the fact that multiple

symbols may be assigned to one package, and will therefore have the same

name.

This command is used in conjunction with the sorting and merging fea-
tures of the Scripter to count the number of different values of afield
found in a collection of objects. It can be used for error-checking pur-
poses to ensure that some group of objects have al been assigned the
same value, or can be used to generate counts of various kinds in parts
lists.

P See also: $SORT, $COMBDEVSON, $SINGLE, $MERGE.

Keyword

$CREATEFOLDER/$CREATEDIRECTORY

Status

New in 4.0

Synopsis

$CREATEFOLDER(dirName)
$CREATEDI RECTORY(dirName)

Returns

N. A.

Type

Action

Where

Top level

Description

Creates adirectory with the given name. If no path is given, the directory will
be created inside the "current" directory, usually the one containing the cur-
rent design. $CREATEFOLDER and $CREATEDIRECTORY areidentica
in function.

Examples

$CREATEDIRECTORY ($DESIGNNAME Reports)

This command creates adirectory on disk. Thisisintended specifically
for cases where netlist formats require the generation of multiplefiles and
it ismost convenient to place them in a separate directory.

The argument string can contain only the name for the new directory or it
can specify arelative or absolute path name. If no path is given, the new
directory will be created in the current directory. Thisisusually the
directory containing the current design, unless thereis no current design
or it has been set by another command.

If arelative path is given, it is relative to the current directory. This com-
mand will only create the bottommost directory in the path, the others
must already exist.

If an absolute path is given, it must start with the disk hame.

If the specified directory already exists, it isleft untouched and no error is
given. After thiscommand has completed successfully, the current direc-
tory will be the newly-created one (or the pre-existing one, if it was

aready there).

» See more information about directories and path names in “File Names
and Paths” on page 36.

P See also $FOLDER/$DIRECTORY.

Keyword

$CREATEREPORT

Status

Changedin 4.0

Synopsis

$CREATEREPORT[(nameString)]| $PROVPT][$CREATOR(creator -
Code) |
$CREATEREPORT $NULL

Returns

N. A.

Type

Action

Where

Top level

Description

Creates areport output file.

Examples

$CREATEREPORT ($DESIGNNAME _.net) $PROMPT

This command creates atext file for subsequent report output. This
alows you to eliminate or control the automatic file save prompt that
occurs when a script generates any output.

Note that output files can be "nested" to any desired depth. |.e. if you do
multiple successive SCREATEREPORT commands without intervening
$CLOSEREPORTS, output will be directed to thefile created by the most
recent one. When it is closed, subsequent output will be directed to the
next most recent one, etc.

If the SPROMPT option is specified, the user will be prompted with a
standard file save box with the given name string as the default file name.

If SPROMPT is not specified, then the file will be created immediately
with no user prompt. If thefile already exists, it is replaced with no user
prompt. Thefileiscreated in the current directory, which isnormally the
one containing the current design file. Note that SCREATEREPORT
does not accept a pathname as part of the file name. The directory can be
specified by using $FOLDER or $DIRECTORY to change the current
directory.

The $CREATOR option (Macintosh only) allows you to specify the 4-
character "creator type" which associates an application with thefile. Itis
beyond the scope of this manual to go into the background of this mecha-
nism, but the following table lists some commonly-used values.

The $NULL option causes a"null" file to be created, i.e. al output gener-
ated by the script will be discarded. It cannot be used in conjunction with

any of the other options.

» For more information on text output files, see “File Input and Output”
on page 36.

P See also $CLOSEREPORT, $CREATETRANSCRIPT.

Keyword

$CREATETRANSCRIPT

Status

New in 4.0

Synopsis

$CREATETRANSCRI PT[(nameString)][$PROMPT][$CREATOR(Cre-
atorCode) |

Returns

N. A.

Type

Action

Where

Top level

Description

Creates a transcript output file.

Examples

$CREATETRANSCRIPT($DESIGNNAME Error Log)

This command creates atext file for subsequent transcript output, i.e. any
strings written with the $WRITETRANSCRIPT command. In terms of
format and options, this command isidentical to SCREATEREPORT.

» For more information on text output files, see “File Input and Output”
on page 36.

P See also $WRITETRANSCRIPT, $CREATEREPORT.

Keyword

$DATE

Status

Changedin 4.0

Synopsis

$DATE
$DATE(formatString)
$DATE(formatString, valueString)

Returns

Text

Type

Data

Where

Script

Description

This command is used to display the current date or to convert raw decimal
integer date/time valuesto adesired format. Thefirst form returns the current
datein the default format. The second form is used to specify any time or date
format using format keywords. Thethird form is used to provide araw date
value for conversion. When used with an argument list, $TIME and $DATE
areidentical in function.

Example

This report was produced on a $DATE($W)
Thiswill generate the day of the week, fully spelled out.

When used without an argument list, SDATE generatesthe current datein
the default "long” format for the host machine. This behavior can be
modified by adding an argument string containing format keywords for
the various date and time elements that are available. Any charactersin
the format string that are not recognized as one of the following items will
be included literally in the output string. If a$ character is needed in the
output, it can be escaped by preceeding it with a backslash.

If asecond argument is provided, it is assumed to be a decimal integer
representing a date/timein raw form. Thisformat is used to store dates
for avariety of internal purposes such as device date stamping, file modi-
fied dates, etc., so $DATE can be used to convert them for output.

Note that when used with an argument list, $TIME and $DATE are iden-
tical in function.

See the table of date and time codes under $TIME.

P See also: $TIME, $DATECREATED, $DATEMODIFIED, and the general
information provided in “Controlling Report Page Layout™ on page 17.

Keyword

$DATECREATED/$DATEMODIFIED

Status

New in 4.0

Synopsis

$DATECREATED
$DATEMODI FI ED

$DATECREATED(formatString)
$DATEMODI FI ED(formatString)

Returns

Text

Type

Data

Where

Script

Description

If used without arguments, $SDATECREATED and $DATEMODIFIED
return the created or modified date of the current design in the default format.
An argument list can be added to specify any time or date format. When used
with an argument list, STIMECREATED and $DATECREATED are identi-
cal infunction and, similarly, $TIMEMODIFIED and $DATEMODIFIED are
identical.

Example

Design $DESIGNNAME was created on $DATECREATED

These two commands are variations of the $DATE command and behave

identically except that they use the created or modified date of the current
design, rather than the current date.

P See also $DATE, $TIMECREATED and $TIMEMODIFIED.

Keyword

$DEFINEATTR

Status

New in 4.0

Synopsis

$DEFI NEATTR(fieldName/ optiongmaxLength)

Returns

N.A.

Type

Action

Where

Top level

Description

Used to define anew attribute field for the design or modify settingsin an
existing one.

Example

$DEFINEATTR(TraceWidth/SY)

Thiswill define afield called TraceWidth for signals. It will be marked as Pri-
mary. If thefield already exists, it will be set to Primary if it is not already.

This command allows you to define an attribute field in the current

design, i.e. to add it to the table that appears in response to the Define
Attribute Fields menu command. It isnot strictly necessary to use this
command to define afield beforeusing it in ascript. A $SETATTR on
such afield will always define it automatically with default settingsin the
designs attribute table. However, the default settings may not be the
desired ones and may change in future version of DesignWorks. For this
reason, it is preferable to define afield before setting it. Thisway, you
can ensure that settings like the maximum length and the various options
are appropriate for its intended usage.

The $DEFINEATTR command can also be used to change certain set-
tingsin existing fieldsin adesign. No changes are allowed that would
affect the usage of any existing fields. The itemsthat can be changed are
noted in the table below.

The format string that is used to define anew field consists of :

The name of the field
A slash character "/"

A number of upper case |etters, each of which indicates an option. At
least one option must be specified, that being the alowable object
type, i.e. device, signal, pin or design.

B Anoptiona decimal integer indicating the maximum length.
Note that when attribute datais stored internadly, it is aways allocated as
avariable-length string, so thereis no wastage of memory space by speci-

fying alonger maximum length. The default value is the maximum value
of 32,000 characters.

The following table defines the meaning of the format code letters. Note
that letters must be given in upper case.

$DEFINEATTR Format Codes

Format Let- | Modify Existing
ter Fields? Meaning
D No Device
S No Signal
P No Pin
C No Design/Circuit
\% Yes Visible by default
F No Fixed (i.e. cannot be changed
by the user)

$DEFINEATTR Format Codes

Format Let- | Modify Existing
ter Fields? Meaning
X No Value fixed - i.e. read only
| No Keep with instance
R Yes Rotate with object
N No Name characters only - not im-
plemented
G Yes-exceptNameand | Group with name
InstName
w Yes Show field name
A No Allow carriage returns
L Yes Location fixed
Y Yes In primary list
T No Link to Part
U No Numeric characters only - not
implemented
M No Temporary field - not saved
with file, not visible to user
| MPORTANT: Atleast one of D, S, P or C must be specified.

P See also $SETATTR and $HIDEALLATTRDEFS and the general informa-
tion on attribute definitions provided in chapter "Attributes” in the Design-
Works 4.0 User’s Guide.

Keyword

$DEFINEBLOCK

Status

New in 4.0.

Synopsis

$DEFI NEBLOCK(blockName)

Returns

N.A.

Type

Definition

Where

Top level

Description

Indicates the start of ablock within a script.

Examples

$DEFINEBLOCK(InternalCct)
$DEVICES$DEVNAME $PINS

$END
$DEVICESSINTERNAL(InternalCct)

This example creates ablock that is referred to by the SINTERNAL com-
mand. |.e. The script linesin the block will be executed to output the internal
circuit of each devicelisted in the last line.

A block is simply a contiguous sequence of lineswithin ascript file. The
$DEFINEBLOCK command indicates the start of ablock, but does not
impose any meaning on it. Theinterpretation of the contents of the block
depends entirely on the command that refersto it. Some commands, such
as SINTERNAL, $INCLUDE or $EXECUTE, treat the block as a sort of
"subroutine", that is, a sequence of commandsto be executed when called
upon. Other commands, such as$MAP, treat the block asatable of literal
text values.

The only rules about the contents of a block are imposed by the require-
ment that the script parser must be able to skip over the contents and find
the corresponding $END. Thisimposes the following limits on block for-
mat:

m If the block contains commands, they must be a complete and valid
set of commands. In particular, any structure that requires an $SEND
(e.g. $IF) must be completed within the block.

®m If the block contains literal data, there must be no data items that
might confuse the parser in its search for an $END. In particular, any
items starting with a$ character must be escaped with a backslash.

When the Scripter encounters a$DEFINEBLOCK command in thefile, it
notes the starting point of the block and then skips over it. Execution
resumes on the next line past the $END.

P See also: $INCLUDE, $INTERNAL, $MAP, $VERIFY, $TABLE, $INLINE.

Keyword

$DEFINECIRCUIT

Status

No changein 4.0.

Synopsis

$DEFI NECI RCUI T

Returns

N.A.

Type

Definition

Where

Top level

Description

Indicates the start of an internal circuit definition within ascript. Thisis actu-
ally aspecial case of SDEFINEBLOCK and is exactly equivalent to:
$DEFINEBLOCK(_Internal_)

Examples

$DEFINECIRCUIT
$DEVICES$DEVNAME $PINS
$END

$DEVICESSINTERNAL

This example creates a block that is referred to by the SINTERNAL com-
mand. |.e. The script linesin the block will be executed to output the internal
circuit of each devicelisted in the last line.

Keyword

$DESIGNNAME

Status

Newin3.1.5

Synopsis

$DESI GNNAVE

Returns

Text

Type

Data

Where

Script - design

Description

Returns the name of the current design, i.e. the file name with any "." exten-
sions removed.

Examples

This report was generated from $DESIGNNAME

$DESIGNNAME can be used in the following areas:

® |nan $INCLUDE command, for generating the name of the include
file.
B In a $CREATEREPORT command, for generating the name of the

report output file.

B |na$HEADER section.

B Anywhere else in the text of a script that is not part of some other
definition or listing command.

$DESIGNNAME vs. $FILENAME

The operation of the $DESIGNNAME and $FILENAME keywordsis
designed to make it easier to work with "." dot extensions for report files.
Thisis especially an issue when exporting to DOS or Windows-based
PCB or other design systems.

m 3$DESIGNNAME will be replaced by the name of the currently open
design