
© 2012 Citra Technologies

Citra Pivot
Developer's Manual

version 1.0

Citra Pivot Developer's ManualI

© 2012 Citra Technologies

Table of Contents

Chapter 1 Preface 1

Chapter 2 Pivot table 2

... 31 Row and column areas

... 32 Data area

... 53 PivotTableModel

... 54 Appearance

... 65 Pivot components

... 76 Localization

Chapter 3 Olap Metadata 8

... 81 OlapObject

... 82 OlapSchema

... 83 OlapCube

... 84 OlapDimension

... 95 OlapHierarchy

... 96 OlapLevel

... 97 OlapMember

... 98 OlapMeasure

... 109 OlapType

Chapter 4 Interfacing with olap data 11

... 111 DataSource

... 112 Connection

... 123 OlapSelection

... 124 CustomSelection

... 135 OlapTuple

... 136 OlapSet

... 137 OlapCell

... 148 Cursors

.. 14OlapCursor

.. 14TupleCursor

.. 14ValueCursor

.. 14TabularCursor

... 149 AxisOlapSet

... 1510 OlapCellSet

... 1611 TabularSet

IIContents

II

© 2012 Citra Technologies

... 1712 Exceptions

Chapter 5 Pivoting olap data 18

... 181 OlapTableModel

... 202 Olap adapters

... 203 OlapDefinition

... 214 OlapProvider

.. 21DefaultOlapProvider

... 21Pivoting

... 22Sorting

... 23Filtering

... 24Drilling

... 24Top/Bottom

... 25Root members

... 25Subtotals

... 25Grand totals

... 25Swapping axes

... 26Empty/Non-empty cells

... 26Visual Totals

... 265 Olap components

... 276 OlapDataModel

... 277 Appearance

... 278 OlapPivotTable

Chapter 6 XML/A compatibility 29

... 291 Creating an olap4j connection

... 302 Library dependencies

... 313 Olap4jDataSource

Chapter 7 TableDataSource 32

... 321 TableContext

... 332 TableAggregator

.. 33StandardMeasureAggregator

.. 34DerivedMeasureAggregator

... 343 Defining the schema

.. 35TableSchema

.. 35TableCube

.. 36TableDimension

.. 36TableHierarchy

.. 37TableLevel

.. 37TableMeasure

.. 38Example: Creating a schema

... 394 Creating a TableDataSource

... 415 Saving/loading

... 426 Incremental aggregation

... 437 Making queries

Citra Pivot Developer's ManualIII

© 2012 Citra Technologies

... 448 Formatting values

Chapter 8 Remote Operations 45

... 451 RemoteOlapPanel

... 452 RemoteOlapStyle

... 453 RemotePendingValue

... 464 RemoteOlapListener

... 465 Usage

Preface 1

© 2012 Citra Technologies

1 Preface

Α pivot table is a component for summarizing, organizing and analyzing huge amounts of
data. It is the most important visualization interface of an OLAP (OnLine Analytical
Processing) system. There are hundreds of pivot table implementations, in various
programming languages and architectures, such as C++, C#, Java, Eclipse, Delphi, Excel,
Flash, Silverlight etc. Moreover, expensive solutions are offered by big companies, like
Microsoft and Oracle. Lately, with the emergence of Rich Internet Applications (RIA),
web-based pivot tables represent a large share of the market. Despite this fact, there is still a
growing demand for traditional desktop pivot tables, especially in the Java Swing framework.
We hope and feel that our Citra Pivot library, a powerful yet affordable pivot table solution,
completely developed under Java/Swing, will successfully fill this requirement.

This manual intends to introduce Citra Pivot to developers, to describe and explain its main
concepts. No matter how hard we tried to write it, we realize that there are still pieces
missing, therefore under no circumstances should it be considered to be a complete
description of all Citra Pivot's features and capabilities. The API documentation complements
this manual, as well as our developer's forum at http://www.citra-tech.com/forum. For
technical questions, we can also be reached via e-mail at support@citra-tech.com.

http://www.citra-tech.com/forum
mailto:support@citra-tech.com

Citra Pivot Developer's Manual2

© 2012 Citra Technologies

2 Pivot table

PivotTable is a JTable subclass that allows the pivoting of multi-dimensional data. Its
accompanying table header is PivotTableHeader. The pivot table is split in three areas, the
row, column and data area. Row and column areas are represented by a PivotRowAdapter
and a PivotColumnAdapter respectively, the data area with a PivotDataModel, while all
three areas are encapsulated in a PivotTableModel. The figure below shows a typical pivot
table.

The following regions are identified:

1: Row header area
2: Column header area
3: Data area

The appearance of the pivot table can be customized with the help of specialized renderers,
PivotRowHeaderRenderer for the row area and PivotColumnHeaderRenderer for the
column area, as well as with a PivotStyleModel. Localization is also possible via
PivotResourceManager.

Pivot table 3

© 2012 Citra Technologies

2.1 Row and column areas

The row and column areas of a pivot table are defined with PivotRowAdapter and
PivotColumnAdapter, respectively, the first being a TableModel, while the second a
TableColumnModel. In the JTable framework, a TableModel is used as the table's data model
and a TableColumnModel as the table's header column model. However, this applies to a
two-dimensional data model. In the multi-dimensional case, this notion is extended by
chaining models (adapters) together.

Data structures pivoted against a horizontal and vertical axis represent dimensions. The first
dimension is specified by a single adapter, the second with a number of adapters equal to the
number of entities in the first adapter, the third dimension with a number of adapters equal to
the number of entities in the second adapter, and so on. The data model of each adapter
contains a tree structure, extending the TreeModel interface. Therefore, in dimensions other
than the first, adapters are created for every node in the previous adapter. In order to retrieve
the next dimension's adapter at a given position, the following methods are used:

public PivotRowAdapter getAdapter(TreePath path): for the row header
public PivotColumnAdapter getAdapter(TreePath path): for the column header

Also, the adapter depth is defined as the total number of dimensions (and thus adapters)
below the one examined. The following method retrieves an adapter's depth:

public int getAdapterDepth()

In addition, each node has a so-called pivot type, that specifies whether it is a normal, subtotal
or grand total node. The type is used by visualization classes, such as Pivot Table's
SpanDrawer, that merges summary cells together, as needed. The type is retrieved with:

public int getPivotType(TreePath path)

Concrete implementations used throughout the library are DefaultPivotRowAdapter and
DefaultPivotColumnAdapter, that are constructed with a number of TreeTableModels and
TreeTableColumnModels respectively, that each define the tree data structure to be used for
each dimension.

2.2 Data area

The data area is represented by a PivotDataModel. In a two-dimensional TableModel, a cell
is defined by only two parameters, the row and column index. In the multi-dimensional case
of pivot tables, as many parameters are required as there are models (dimensions) in the pivot.
Since, in PivotDataModel, models are effectively TreeModels, the row and column indices
are replaced with TreePath arrays. Therefore, the method that determines a cell's value
changes accordingly.

Citra Pivot Developer's Manual4

© 2012 Citra Technologies

More specifically:

TableModel

dimensions: two
parameters: row and column index
method: public Object getValueAt(int rowIndex, int columnIndex)

PivotDataModel

dimensions: multiple
parameters: row and column TreePath arrays
method: public Object getValueAt(TreePath[] rowPaths, TreePath[] columnPaths)

The TreePath arguments completely identify a cell in the data model. The length of each path
array matches the number of models in each area (row and column).

Example: Identifying a cell in a PivotDataModel

For a cell with row and columns indexes row and column respectively, in the dataModel:

//get the first row adapter
PivotRowAdapter rowAdapter = dataModel.getPivotRowAdapter();

//get the row paths for the row index
TreePath[] rowPaths = PivotUtils.getPathsForRow(

row, dataModel.getPivotRowAdapter());

//iterate over the row values
for (int i=0;i<rowPaths.length;i++) {
 //get the node for this path
 Object node = rowPaths[i].getLastPathComponent();
 //get the value of the model at this location
 Object value = rowAdapter.getTreeTableModel().getValueAt(node, 0);
 //get the next adapter
 rowAdapter = rowAdapter.getAdapter(rowPaths[i]);
}

//get the first column adapter
PivotColumnAdapter columnAdapter = dataModel.getPivotColumnAdapter();

//get the column paths for the column index
TreePath[] columnPaths = PivotUtils.getPathsForColumn(

column, dataModel.getPivotColumnAdapter());

//iterate over the column values
for (int i=0;i<columnPaths.length;i++) {
 //get the node for this path
 Object node = columnPaths[i].getLastPathComponent();

Pivot table 5

© 2012 Citra Technologies

 //get the value of the model at this location
 Object value = columnAdapter.getTreeTableColumnModel().

getColumn(node).getHeaderValue();

 //get the next adapter
 columnAdapter = columnAdapter.getAdapter(columnPaths[i]);
}

2.3 PivotTableModel

PivotTableModel is Pivot Table's data model. There are three areas used in pivoting, the row
header, column header and data area. PivotTableModel consists of three sub-models, each
corresponding to these areas:

PivotRowAdapter: the model of the table's row header
PivotColumnAdapter: the model of the table's column header
DataModel: the model of the data area

DefaultPivotTableModel is the default PivotTableModel implementation that requires a
PivotDataModel in its constructor.

2.4 Appearance

The table appearance can be easily customized. The cells of the row and column areas are
rendered with specialized renderers, PivotRowHeaderRenderer and
PivotColumnHeaderRenderer. These renderers return suitable components, showing
expand/collapse icons that allow the discovery of the tree structures being displayed. The
component for a PivotRowHeaderRender is returned with:

public Component getTreeTableCellRendererComponent(
JTable table,
Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column,
boolean isLeaf,
boolean isExpanded,
PivotRowAdapter adapter,
TreePath path,
TableCellRenderer cellRenderer)

A similar method is used in the case of a PivotColumnHeaderRenderer:

public Component getTreeTableCellRendererComponent(
JTable table,

Citra Pivot Developer's Manual6

© 2012 Citra Technologies

Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column,
boolean isLeaf,
boolean isExpanded,
TreeTableColumnModelAdapter adapter,
TreePath path,
TableCellRenderer cellRenderer,
int level)

In addition to renderers, a PivotStyleModel changes typical component attributes, such as the
font and the background and foreground colors. Its default implementation is a
DefaultPivotStyleModel that uses a PivotStyle for the aforementioned purpose. Unlike
renderers, the pivot style is applied to all three pivot areas with the methods:

public void applyDataStyle(Component c, PivotTable table,
PivotRowAdapter[] rowAdapters, TreePath[] rowPaths,
PivotColumnAdapter[] columnAdapters, TreePath[] columnPaths,
int row, int column)

public void applyColumnHeaderStyle(Component c, PivotTable table,
PivotColumnAdapter adapter, TreePath path,
int level, int column)

public void applyRowHeaderStyle(Component c, PivotTable table,
PivotRowAdapter adapter, TreePath path,
int row, int column)

2.5 Pivot components

PivotTable is the component that allows the pivoting of multi-dimensional data. Its
accompanying JTableHeader is PivotTableHeader. In a pivot table, there are three distinct
areas. These are the column area (the horizontal axis), the row area (the vertical axis) and the
intersection of the two, represented by the data area. These three areas are completely
specified by the table's model, which is a PivotTableModel. As PivotTable extends JTable,
and also our Citra Table component, AdvancedJTable, it will inherit all methods and
properties of both superclasses.

PivotTable creates and uses a single PivotRowHeaderRenderer for each row header cell. It is
created with PivotTable's method:

protected PivotRowHeaderRenderer createDefaultPivotRowRenderer()

Also, PivotStyleModel is a property of PivotTable that is created with:

protected PivotStyleModel createDefaultPivotStyleModel()

Pivot table 7

© 2012 Citra Technologies

PivotTableHeader creates and manages a number of PivotColumnHeaderRenderer instances,
each for every level in the column header area. The renderers are created with
PivotTableHeader's method:

protected PivotColumnHeaderRenderer createDefaultPivotColumnRenderer()

2.6 Localization

Localization in our pivot table library is materialized through PivotResourceManager.
PivotResourceManager uses a ResourceBundle instance which contains String key/value pairs
for the various texts used throughout the library. By default, a resource bundle is created with
the current locale, which loads the accompanying property file, named CitraPivotBundle.
properties. By modifying the contents of this file, or by creating a new one in the format
CitraPivotBundle_[locale].properties, developers may customize the language of the various
Citra Pivot components, like OlapAssistant and OlapFilterPanel. The resource bundle can be
assigned with:

public static void setResourceBundle(String resource)
public static void setResourceBundle(String resource, Locale locale)

Assigning a new resource bundle, will have no effect on the components that are currently
displayed in the application. For updating the various text strings, the UI needs to be updated
and the PivotResourceManager's updateComponents variable needs to be set to true.

Example: Update the application with a new resource bundle

//assign a new resource bundle
PivotResourceManager.setResourceBundle("c:\\resources\\MyResource.properties");

//set update components variable to true
PivotResourceManager.setUpdateComponents(true);

//get the application frame
Frame frame = JOptionPane.getFrameForComponent(pivotTable);

//update the frame's UI
SwingUtilities.updateComponentTreeUI(frame);

//set update components variable back to false - optional
PivotResourceManager.setUpdateComponents(false);

Citra Pivot Developer's Manual8

© 2012 Citra Technologies

3 Olap Metadata

Citra Pivot's function is to display multidimensional data. Before an attempt is made to show
how this is achieved, it is important to describe what is meant by multidimensional data, and
their relation to each other. In fact, data in an OLAP source carry descriptive information
about the OLAP structure, and are thus called metadata. These structural metadata are
organized in cubes, dimensions, hierarchies, levels, members and measures, all of which
define the OLAP schema. Next, each of these entities will be described in detail.

3.1 OlapObject

OlapObject is the base class for all olap metadata objects. It defines methods for retrieving the
name, id, caption and description of the object under consideration. More specifically:

getID(): returns the object's unique identifier. This value is unique in the whole schema.
getName(): returns the object's name.
getCaption(): returns the object's caption. This value is used by default when pivoting
hierarchies.
getDescription(): returns the object's description.

3.2 OlapSchema

OlapSchema is the top container for cubes and dimensions. There are two methods defined:

List getCubes(): returns a list of cubes
List getDimensions(): returns a list of dimensions

The dimensions returned by the schema are shared between its cubes.

3.3 OlapCube

OlapCube is part of a schema and consists of a number of dimensions and measures. It
contains the following methods:

List getDimensions(): returns the dimensions of the cube
OlapDimension getMeasureDimension(): returns the measure dimension
List getMeasures(): returns the measures of the cube
OlapSchema getSchema(): returns the cube’s schema
List getSupportedLocales(): returns a list of the supported Locales

3.4 OlapDimension

OlapDimension represents an organized data structure. Data belonging to the same dimension
have similar properties, e.g. a Customer dimension may contain information about a

Olap Metadata 9

© 2012 Citra Technologies

company's clientele, like country, city, town etc. The way data are categorized within a
dimension, is called a hierarchy. A dimension must have at least one hierarchy and also a
default one. A special type of dimension, called the measure dimension, is part of every cube,
and contains the cube's measures. The following methods are defined:

OlapHierarchy getDefaultHierarchy(): returns the default hierarchy
List getHierarchies(): returns the hierarchies of the dimension
boolean isMeasureDimension(): returns true if the dimension is the measure dimension

3.5 OlapHierarchy

OlapHierarchy represents an organization of data within a dimension. Each hierarchy contains
a number of unique categories, called levels. Members within the same level have the same
properties and attributes. For example, a Year level contains years. At least one level must
exist and also a default member must be defined. OlapHierarchy defines the following
methods:

OlapMember getDefaultMember(): returns the default member of the hierarchy
OlapDimension getDimension(): returns the dimension of the hierarchy
List getLevels(): returns the levels of the hierarchy
boolean hasAll(): returns true if the hierarchy has a single member at the root level

3.6 OlapLevel

OlapLevel is a data structure that contains similar members, each at the same depth from the
root of the hierarchy. There is only one method defined:

OlapHierarchy getHierarchy(): returns the hierarchy of the level

3.7 OlapMember

OlapMember represents a data value in a level, hierarchy or dimension. Its methods are:

OlapLevel getLevel(): returns the level of the member
int getMemberCount(): returns the number of children this member has

3.8 OlapMeasure

OlapMeasure is a special case of an OlapMember, that represents a calculation within a cube.
Measures belong to a special type of dimension, called the measure dimension. The type of
measure depends on the evaluation method used in order to produce it. It defines the
following methods:

OlapType getDataType(): returns the olap type of the measure's value

Citra Pivot Developer's Manual10

© 2012 Citra Technologies

Class getJavaDataType(): returns the type of the measure's value as a Java Class object

3.9 OlapType

OlapType describes the type of a given measure value. There are nine different data types that
relate to the datatypes defined in the OLE DB system. They are:

INTEGER
DOUBLE
CURRENCY
BOOLEAN
VARIANT
UNSIGNED_SHORT
UNSIGNED_INTEGER
LARGE_INTEGER
STRING

There is one method defined:

String getName(): returns the type’s name in the OLE DB specification

Olap Metadata 11

© 2012 Citra Technologies

4 Interfacing with olap data

Interfacing with OLAP servers is materialized with classes found in the
com.citra.pivot.olap.data package. In fact, DataSource represents a link to a
multidimensional storage, be it a traditional OLAP database, like Microsoft SQL Analysis
Server, or a in-memory repository. Queries are made by executing an OlapSelection from a
Connection instance that is retrieved from the datasource. The data that is returned is
encapsulated into various types, such as OlapTuple, OlapSet, OlapCell, OlapCellSet and
TabularSet, according to the query. Furthermore, an OlapCursor can be used to iterate over
the queried data. Finally, in the case of errors, a DataSourceException is thrown.

4.1 DataSource

In order to create a link to an OLAP server, a DataSource is used. DataSource is a Java
interface that, at the time of writing, has two concrete implementations: Olap4jDataSource,
for connecting to OLAP servers with the olap4j driver using the XML/A protocol, and
TableDataSource, which is a in-memory multidimensional storage, based on a
two-dimensional tabular model. The schema of the datasource is retrieved with:

public OlapSchema getSchema()

Also, for making queries, a datasource connection is required which is created with the
method:

public Connection createConnection()

4.2 Connection

A Connection instance is used to access the OLAP server's data and metadata. In order to do
so, the following method should be called:

public Object execute(OlapSelection selection) throws DataSourceException

Depending on the type and parameters of the OlapSelection, different objects are returned.
OlapSelection is described in the subsequent section.

Once a connection has been created, it will stay in memory until it is closed explicitly with the
method:

public void close() throws DataSourceException

Therefore, always remember to close the connection after it is no longer needed, so that
resources can be released.

Other Connection methods are:

Citra Pivot Developer's Manual12

© 2012 Citra Technologies

public OlapCube getCube(): returns the cube the connection will run queries against
public void setCube(OlapCube cube): assigns the cube the connection will run queries against
public Locale getLocale(): returns the current java locale that is applied to the queried data
public void setLocale(Locale locale): assigns the current java locale
public OlapSchema getSchema(): returns the connection's schema

4.3 OlapSelection

OlapSelection is an interface that is used for selecting objects from a DataSource. The
selection can return a list of members, data values, query results or any Java Object. There is
only one method defined for that purpose:

public Object resolveSelection(Connection connection) throws DataSourceException

Depending on the return object, OlapSelections are further categorized into sub-interfaces that
also include an additional method for returning a more specific object. These are:

AxisSelection: returns an AxisOlapSet
LogicalSelection: returns a Boolean
MemberSelection: returns an OlapMember
QuerySelection: returns an OlapCellSet
SetSelection: returns an OlapSet
StringSelection: returns a String
TabularSelection: returns a TabularSet
TupleSelection: returns an OlapTuple

When constructing an OlapSelection, a number of arguments is supplied that determine the
selection output. For example, SingleSetSelection takes an OlapMember and an operator as
arguments and returns its children, siblings, parent, descendants, ancestors or leaf members,
according to the operator. OlapSelections can also be nested in order to produce more
complex results. As is the case with OrderSetSelection, that takes a SetSelection, a sort
operator and a measure as arguments and returns an ordered set. For a complete list and a
description of each OlapSelection implementation, please refer to Citra Pivot's API
documentation.

4.4 CustomSelection

For creating custom user-defined selections, a CustomSelection should be used, which is an
OlapSelection sub-interface. If a selection is constructed merely by implementing
OlapSelection, then a DataSourceException will be thrown when the DataSource attempts to
resolve it.

Interfacing with olap data 13

© 2012 Citra Technologies

4.5 OlapTuple

OlapTuple is a container for OlapMembers. A tuple may contain any number of members,
with the only limitation that each belongs to a different dimension. The tuple's dimensionality
defines the number of members in the tuple, and thus the number of unique dimensions:

public int getDimensionality()

The list of members is retrieved with:

List getMembers()

OlapTuple's concrete implementation is DefaultOlapTuple, that contains methods for adding
members to it.

4.6 OlapSet

OlapSet is a container of OlapTuples. A set may contain any number of tuples, however each
tuple must have the same dimensionality. In order to retrieve a set's dimensionality:

public int getDimensionality()

Also, the set's tuples are retrieved with:

public List getTuples()

OlapSet's concrete implementation is DefaultOlapSet, that contains methods for adding
tuples to it.

4.7 OlapCell

OlapCell represents a calculated value in a cube. A value is produced for every possible
combination between the cube's dimensions. Typically, OLAP servers precompute this
calculation after the cube's creation. OlapCell encapsulates this information, which can be
retrieved with the methods:

public Object getValue(): returns the calculated value
public String getFormattedValue(): returns the calculated value as this has been formatted
into a string
public OlapMeasure getMeasure(): returns the measure with which the value is associated

Note that OlapCell's concrete implementation is DefaultOlapCell.

Citra Pivot Developer's Manual14

© 2012 Citra Technologies

4.8 Cursors

Cursors are used in order to iterate through query results. OlapCursor is the base cursor class,
TupleCursor is used for OlapTuples, ValueCursor for OlapCells and TabularCursor for two
dimensional data.

4.8.1 OlapCursor

OlapCursor defines methods for iterating over sets of data:

public int getPosition(): gets the current cursor position
public int getPositionCount(): gets the total number of the cursor’s positions
public boolean next(): moves to the next position and returns true if there are more results
public void reset(): moves the cursor to the beginning
public void setPosition(int): moves the cursor to a given position

4.8.2 TupleCursor

TupleCursor is a cursor that retrieves and assigns olap tuples at a given position. It defines the
following methods:

public OlapTuple getCurrentTuple(): returns the tuple at the current position
public void setCurrentTuple(OlapTuple): assigns the tuple at the current position

4.8.3 ValueCursor

ValueCursor is a cursor that retrieves and assigns olap cell values at a given position. It has
the methods:

public OlapCell getCurrentValue(): returns the cell at the current position
public void setCurrentValue(OlapCell): assigns the cell at the current position

4.8.4 TabularCursor

TabularCursor is a cursor that retrieves data in tabular form. It has the methods:

public int getColumnCount(): returns the number of columns in the set
public String getColumnName(int index): returns the column name at a given location
public Object getValue(int index): returns the column value at a given location of the
current row in the set

4.9 AxisOlapSet

AxisOlapSet contains tuples that are assigned to a given axis. The axis index or ordinal is
retrieved with:

Interfacing with olap data 15

© 2012 Citra Technologies

public int getAxisOrdinal()

For iterating over the tuples, a TupleCursor is used which is retrieved with:

public TupleCursor getTupleCursor()

Note that the concrete AxisOlapSet implementation is DefaultAxisOlapSet.

Example: Iterate over an AxisOlapSet to discover the returned tuples

Having axis as the AxisOlapSet:

//get the tuple cursor
TupleCursor tupleCursor = axis.getTupleCursor();

//iterate over tuples
while (tupleCursor.next()) {

//get the current tuple
OlapTuple tuple = tupleCursor.getCurrentTuple();
//print out
System.out.println("members:" + tuple.getMembers());

}

4.10 OlapCellSet

OlapCellSet is the result of an olap query, that contains a number of OlapCells, as well as
metadata information about the values returned. When building a query, tuples are assigned to
different axes. The result from the query contains the same axis assignment, which is encoded
in an AxisOlapSet. These axes are retrieved with:

public List getAxisSets(): returns a list of AxisOlapSets

Every axis set can be probed individually, via its TupleCursor, in order to discover the
returned tuples on each of them.

The query may optimally include a filter, which will also be present in the result. To find out
the filter members, the appropriate tuple cursor can be retrieved:

public TupleCursor getFilterCursor(): returns the cursor that contains the filter members, if
any

Finally, the values are retrieved using a ValueCursor, with the method:

public ValueCursor getValueCursor(): returns the cursor that contains the values of the
query result

Citra Pivot Developer's Manual16

© 2012 Citra Technologies

Note that OlapCellSet's concrete implementation is DefaultCellSet.

Example: Iterating over an OlapCellSet to discover the returned values

Having result as the OlapCellSet:

//get the value cursor
ValueCursor values = result.getValueCursor();

//get the filter cursor
TupleCursor filter = result.getFilterCursor();

//get filter tuple
OlapTuple filterTuple = null;
if (filter.next()) {

filterTuple = filter.getCurrentTuple();
}

//iterate over values
while (values.next()) {

//get the current cell
OlapCell cell = values.getCurrentValue();
//get the current tuple
OlapTuple tuple = values.getCurrentTuple();
//compile a list of members
List members = new ArrayList();
members.addAll(tuple.getMembers());
if (filterTuple != null) members.addAll(filterTuple.getMembers());
//print out
System.out.println("value:" + cell.getValue() + ", formattedValue:" +

cell.getFormattedValue() + ", members:" + members);
}

4.11 TabularSet

TabularSet is a container for a two-dimensional set of data. The values of the set can be
iterated over with a TabularCursor:

public TabularCursor getTabularCursor()

TabularSet's concrete implementation is DefaultTabularSet.

Example: Iterating over a tabular set

Having set as the TabularSet:

//get the tabular cursor
TabularCursor cursor = set.getTabularCursor();

Interfacing with olap data 17

© 2012 Citra Technologies

//get the number of columns
int columnsNum = cursor.getColumnCount();

//add the column names to a vector
Vector columns = new Vector();
for (int i=0;i<columnsNum;i++) {

columns.add(cursor.getColumnName(i));
}

//create a vector for the rows
Vector rows = new Vector();

//iterate over the cursor to get the rows
while (cursor.next()) {

Vector row = new Vector();
for (int i=0;i<columnsNum;i++) {

row.add(cursor.getValue(i));
}
//add the row to the rows vector
rows.add(row);

}

//create a table model from the rows and columns vector
DefaultListTableModel model = new DefaultListTableModel(rows, columns);

The model can then be displayed in a table.

4.12 Exceptions

DataSource operations throw a DataSourceException, that identifies the error in the
underlying data connection or query arguments. In addition, OlapCursors throw a
OlapCursorException. The cause of these exceptions is also assigned for further inspection of
the problem.

Citra Pivot Developer's Manual18

© 2012 Citra Technologies

5 Pivoting olap data

The com.citra.pivot.olap package provides an olap implementation of PivotTable. It contains
a number of objects that are extensions of those found in the com.citra.pivot package. These
extended objects include methods that refer to olap data and metadata. Thus,
OlapRowAdapter extends PivotRowAdapter, OlapColumnAdapter extends
PivotColumnAdapter, OlapPivotTable extends PivotTable, OlapDataModel is a
PivotDataModel implementation, OlapCellRenderer is a TableCellRenderer for olap cells
and DefaultOlapStyleModel is a PivotStyleModel based on OlapCells. OlapRowAdapter's
and OlapColumnAdapter's model is an OlapTableModel that extends the TreeTableModel
interface.

OlapDataModel depends on an OlapProvider, that creates the pivoted OlapTableModels, as
well as the row, column and data areas. The way a cube is pivoted is described by an
OlapDefinition, that defines the pivot area and order of a given olap hierarchy. Via the
concrete OlapProvider implementation, DefaultOlapProvider, certain common olap
operations are possible. In fact, filtering is defined with an OlapFilter, sorting with an
OlapSort, getting the top or bottom values in a hierarchy can be achieved with
OlapTopBottom. The provider also has more functions, such as showing empty/non-empty
cells, visual totals, grand and subtotals, swapping the axes, member drilling and more.

5.1 OlapTableModel

OlapTableModel is the model that is used for pivoting olap data. It defines essentially a tree
structure with nodes that contain an OlapMember and/or an OlapMeasure. OlapTableModel
represents members belonging to the same hierarchy. The hierarchy can be retrieved with:

public OlapHierarchy getOlapHierarchy()

The value that is displayed on each node is determined and assigned with:

public String getName(Object node)
public void setName(String name, Object node)

Each node has a pivot type, depending on the nature of the member at that node. There are
three different types, taken from PivotConstants:

NORMAL_TYPE: the default behaviour
SUBTOTAL_TYPE: identifies that a member is showing a subtotal
GRAND_TOTAL_TYPE: identifies that a member is showing a grand total

The type can be retrieved with the getOlapType(Object node) method.

The olap member at a given node is determined with:

Pivoting olap data 19

© 2012 Citra Technologies

public OlapMember getOlapMember(Object node)

In addition to an olap member, a node can also contain a measure. In that case, the default
measure in the pivot table is overridden. For example, the node with member Beverages gives
the value of Beverages with the default measure. On the other hand, a node with member
Beverages and measure Max Sales, yields the value of Beverages with the Max Sales
measure. The measure defined on a node is retrieved with:

public OlapMeasure getOlapMeasure(Object node)

DefaultOlapTableModel is the default OlapTableModel implementation. The model can be
constructed automatically, given a DataSource's Connection and a hierarchy or member, or
manually by supplying only the model's name or hierarchy. In the first case, nodes will be
discovered on demand, as they are needed, by retrieving each node's children members. In the
second, developers should add each node programmatically. For doing so, the various
addEntry and insertEntry methods may be used. The model is being discovered by taking
each node's children, starting from the root. The root member will be excluded from the view,
and therefore, in order to show the 'all' member of a hierarchy, this needs to be attached to a
special root member, called OlapRootMember, which is taken with the static method
OlapRootMember.getRootMember(OlapHierarchy hierarchy). Finally, In a
DefaultOlapTableModel, the member, measure, name and type of a node is stored in an
OlapEdge.

Example: Creating olap models

Having connection as the datasource's connection:

//get a member to use it as the model's root member
OlapMember time2000 = OlapUtils.retrieveMember(

new String[] {"Time", "All Years", "2000"}, connection);

//create a model having time2000 as root
DefaultOlapTableModel model_1 = new DefaultOlapTableModel(time2000, connection);

//create a model showing the whole hierarchy tree
DefaultOlapTableModel model_2 = new DefaultOlapTableModel(

OlapRootMember.getRootMember(time2000.getLevel().getHierarchy(),
connection);

//create a model of the time hierarchy by hand
DefaultOlapTableModel model_3 = new DefaultOlapTableModel(

OlapRootMember.getRootMember(time2000.getLevel().getHierarchy());

//add the '2000' year to the tree
MutableTreeNode time2000node = model_3.addEntry(time2000);

//get the first quarter
OlapMember timeQ1 = OlapUtils.retrieveMember(

Citra Pivot Developer's Manual20

© 2012 Citra Technologies

new String[] {"Time", "All Years", "2000", "Q1-2000"}, connection);

//insert the quarter as a child of the 2000 node
model_3.insertEntry(timeQ1, time2000node);

5.2 Olap adapters

Pivot adapters for olap data are OlapRowAdapter for the row area, and OlapColumnAdapter
for the column area. Olap adapters have a more suitable model for olap data than a
TreeModel, OlapTableModel. In addition, they define a method for retrieving their own type
at a given tree path:

public OlapRowAdapter getOlapAdapter(TreePath path)
public OlapTableModel getOlapModel()

5.3 OlapDefinition

OlapDefinition describes the location and order of a cube's hierarchy on a pivot table. The
location is defined by a pivot type. Valid locations are the row, column and filter area, each
having a pivot type of ROW_TYPE, COLUMN_TYPE and FILTER_TYPE respectively,
whereas a non-pivoted hierarchy has a type of UNDEF_TYPE. In addition, OlapDefinition
maintains an index for each hierarchy, identifying its position in the pivot area. There are
methods for changing and retrieving the pivot type and index of a hierarchy.

Example: Creating and managing an OlapDefinition

//create an olap definition given an olap cube
OlapDefinition def = new OlapDefinition(cube);

//find the time hierarchy
OlapHierarchy time = OlapUtils.findHierarchyByName(cube, “Time”);

//pivot the time hierarchy in the column area
def.setColumnHierarchy(time);

//find the products hierarchy
OlapHierarchy products = OlapUtils.findHierarchyByName(cube, “Products”);

//pivot the products hierarchy in the row area
def.setRowHierarchy(products);

//find the customers hierarchy
OlapHierarchy customers = OlapUtils.findHierarchyByName(cube, “Customers”);

//pivot the customers hierarchy in the row area, before products
def.setRowHierarchy(products, 0);

Pivoting olap data 21

© 2012 Citra Technologies

5.4 OlapProvider

OlapProvider supplies all the information that is needed to display a cube on a pivot table,
based on olap data. It constructs and maintains the row and column areas that are returned
with the getRowAdapter and getColumnAdapter methods respectively. The cube it
represents is returned with the getCube method. In order to build the data models and
adapters, a DataSource's connection is required, that is returned with the getConnection
method. In addition, it defines a filter selection, retrieved with getSlicingMembers. Finally, a
default measure is used, when the measure dimension is not present in the pivot table,
returned with getDefaultMeasure. Its default implementation, widely used in the library, is
DefaultOlapProvider, that will be described next.

5.4.1 DefaultOlapProvider

DefaultOlapProvider is the default OlapProvider implementation. It takes care of creating the
OlapRowAdapters and OlapColumnAdapters required by OlapDataModel. The way a cube is
pivoted is described by an OlapDefinition. DefaultOlapProvider includes a number of
methods that modify the data and structure of the pivot table. These methods may be accessed
programmatically or via the graphical olap components of the com.citra.pivot.olap.gui
package. Data is loaded on demand, as they are needed, depending on the cells that are being
displayed. DefaultOlapProvider makes an effort to minimize query calls, by requesting an
optimal amount of values with a single database call.

5.4.1.1 Pivoting

Hierarchies can be pivoted in one of the three areas, the row, column or filter area. The
pivoting of hierarchies is defined in an OlapDefinition. The olap definition currently in use is
retrieved with:

public OlapDefinition getCompiledOlapDefinition()

This definition will change only when a new one is assigned with:

public void setOlapDefinition(OlapDefinition olapDefinition)
throws DataSourceException

In order to modify the pivoted hierarchies, the current definition should first be retrieved with
either the getCompiledOlapDefinition or the getOlapDefinition methods. After
modification, the altered definition can be applied with setOlapDefinition. If an error occurs,
a DataSourceException will be thrown.

Example: Altering an olap definition

//retrieve the current olap definition
OlapDefinition def = provider.getOlapDefinition();

Citra Pivot Developer's Manual22

© 2012 Citra Technologies

//get the time hierarchy
OlapHierarchy timeHier = OlapUtils.findHierarchyByName(def.getCube(), “Time”);

//pivot the time hierarchy in the row area
def.setRowHierarchy(timeHier, OlapDefinition.ROW_TYPE);

//get the products hierarchy
OlapHierarchy productsHier = OlapUtils.findHierarchyByName(def.getCube(), “Products”);

//pivot the products hierarchy in the column area
def.setColumnHierarchy(productsHier, OlapDefinition.COLUMN_TYPE);

//apply the new definition
try {
 provider.setOlapDefinition(def);
} catch (DataSourceException e) {
 e.printStackTrace();
}

5.4.1.2 Sorting

Olap members in a hierarchy can be sorted either in ascending or descending order, based on
the values of a measure or on their names in the hierarchy. The method used for that purpose
is:

public void setSort(OlapLevel level, int mode, OlapMeasure measure, OlapTuple tuple)

Sorting information is encapsulated in an OlapSort object. The method arguments are:

level: the olap level in the hierarchy that we would like to sort
mode: constant in OlapSort specifying the sort mode, one of NO_SORT, ASC_SORT or
DESC_SORT
measure: the measure based on which the members are sorted. If this is null, members are
sorted using their names.
tuple: a reference tuple on which the sort is additionally based, only valid if measure
argument is not null

Example: Sorting in a time hierarchy

//in a time hierarchy, get the second level, i.e. year level
OlapLevel yearLevel = (OlapLevel) time.getLevels().get(1);

//sort in descending order based on the natural names of the year level members
provider.setSort(yearLevel, OlapSort.DESC_SORT, null, null);

//sort in ascending order based on the sales values of the year level members
provider.setSort(yearLevel, OlapSort.ASC_SORT, sales, null);

//construct a tuple having (Beverages, Greece) as its members

Pivoting olap data 23

© 2012 Citra Technologies

DefaultOlapTuple tuple = new DefaultOlapTuple();
tuple.addMember(beverages);
tuple.addMember(greece);

//sort in ascending order based on the sales values of the year level members
//AND the (Beverages, Greece) tuple
provider.setSort(yearLevel, OlapSort.ASC_SORT, sales, tuple);

//remove sorting for the year level
provider.setSort(yearLevel, OlapSort.NO_SORT, null, null);

5.4.1.3 Filtering

A filtering function is applied per hierarchy with the method:

public void setFilter(OlapFilter filter, OlapHierarchy hierarchy)

OlapFilter is an interface that has methods for defining the filtering process:

public boolean accept(OlapTableModel model, Object parent, Object child): returns true
if child is accepted
public boolean hasFilterDescendants(OlapTableModel model, Object node): returns true
if node has one or more children nodes filtered out.

In order to remove a filter for a hierarchy, the setFilter method should be called, with a null
OlapFilter.

Example: Creating an OlapFilter for filtering out the “1997” year member in a time hierarchy

//create the filter
MyOlapFilter filter = new OlapFilter() {
 public boolean accept(OlapTableModel model, Object parent, Object child) {
 OlapMember member = model.getOlapMember(child);
 if (member.getName().equals(“1997”)) return false;
 return true;
 }
 public boolean hasFilterDescendants(OlapTableModel model, Object node) {
 OlapMember member = model.getOlapMember(node);
 if (member.getName().equals(“All Years”)) return true;
 return false;
 }
};

//set the new filter
provider.setFilter(filter, timeHier);

Citra Pivot Developer's Manual24

© 2012 Citra Technologies

5.4.1.4 Drilling

A drill operation on a given cell can be performed with the method:

public void drill(OlapTableModel model, TreePath path, boolean up)

The drill operation replaces the visible root member of a hierarchy to the one supplied. The
method arguments are:

model: the model for which drilling should occur
path: the path identifying the member in the model
up: boolean variable indicating the direction of the drill

Example: Drilling

Having timeModel as the DefaultOlapTableModel of a time hierarchy

//get the path to the “1997” member
Object rootNode = timeModel.getRoot();
Object allYearsNode = timeModel.getChild(rootNode, 0);
Object year97 = timeModel.getChild(allYearsNode, 0);
TreePath path = new TreePath(new Object[] {rootNode, allYearsNode, year97});

//drill down to 1997
provider.drill(timeModel, path, false);

//drill up to the root node
path = new TreePath(rootNode);
provider.drill(timeModel, path, true);

5.4.1.5 Top/Bottom

Selecting the top or bottom cells in a hierarchy, based on their natural order or on a measure,
represents a common olap operation. This is achieved with the method:

public void setTopBottom(OlapLevel level, int mode, OlapMeasure measure, int count)

The information of the operation is encapsulated in an OlapTopBottom object. The method
arguments are:

level : the level for which the top/bottom operation is applied
mode: constant in OlapTopBottom, specifying the top/bottom mode. One of
NO_TOP_BOTTOM, TOP or BOTTOM.
measure: the measure upon which the top/bottom operation is based. If the measure is null,
then members are selected according to their natural order in the hierarchy.
count: the maximum number of members to select, only valid if the mode is other than
NO_TOP_BOTTOM.

Pivoting olap data 25

© 2012 Citra Technologies

Example: Applying top/bottom operation to a hierarchy

//get the year level
OlapLevel yearLevel = (OlapLevel) timeHier.getLevels().get(1);

//select the top (first) 2 rows in the year level of the time hierarchy
provider.setTopBottom(yearLevel, OlapTopBottom.TOP, null, 2);

//select the bottom 2 rows in the year level, based on the values of the sales measures
provider.setTopBottom(yearLevel, OlapTopBottom.BOTTOM, sales, 2);

//remove the top/bottom from the year level
provider.setTopBottom(yearLevel, OlapTopBottom.NO_TOP_BOTTOM, null, -1);

5.4.1.6 Root members

Usually, hierarchies have a single member that is defined as the root. The visibility of this
root member is controlled with:

public void setShowRootMembers(boolean show)

This setting will apply globally to all hierarchies in the provider.

5.4.1.7 Subtotals

Subtotal visibility for a given level is controlled with:

public void setShowSubTotal(OlapLevel level, boolean show)

5.4.1.8 Grand totals

Row and column grand totals can be shown/hidden with appropriate methods:

public void setShowRowGrandTotal(boolean): shows/hides grand total for the row area
public void setShowColumnGrandTotal(boolean): shows/hides grand total for the column
area
public void setShowGrandTotals(boolean): shows/hides grand totals for both the row and
columns areas

5.4.1.9 Swapping axes

Swapping axes between the row and column area can be useful sometimes. This is achieved
with:

public void swapAxes()

When calling this method, row hierarchies are pivoted to the column area and column

Citra Pivot Developer's Manual26

© 2012 Citra Technologies

hierarchies to the row area.

5.4.1.10 Empty/Non-empty cells

Hiding empty cells from the pivot table can be extremely useful, especially in the case where
there are a lot of them. The following methods control this behaviour:

public void setShowEmptyColumnCells(boolean): shows/hides empty column cells
public void setShowEmptyRowCells(boolean): shows/hides empty row cells
public void setShowEmptyCells(boolean): shows/hides both row and column empty cells

The default behaviour is to show all cells.

5.4.1.11 Visual Totals

With visual totals, dynamic totals are generated for a parent member, according to the
visibility of its children. They are controlled with:

public void setUseVisualTotals(boolean visual)

This setting will apply globally to all the hierarchies currently pivoted. Note that if visual
totals are enabled, a member's value will depend on its actual children that are shown. Values
may differ, when filtering and/or top/bottom operations are present.

5.5 Olap components

The pivot functionality in our library is complemented with a few components that perform
additional olap functions. In particular, drag and drop support is achieved with
HeaderDndSupport, that allows users to move pivoted hierarchies between different
regions, such as the row and column area, with the mouse. In addition, OlapCubePanel is
able to display the dimension, hierarchies and measures of a given cube and OlapFilterPanel
is a JPanel that allows users to install filter conditions, thus creating a slice of the current
cube. Finally, OlapAssistant provides pivot tables, via a popup menu, with many common
olap operations, such as sorting, filtering, drilling, top/bottom, showing of non-empty cells,
axis swapping etc.

Example: Creating olap components

//get the sales cube
OlapCube cube = OlapUtils.findCubeByName(dataSource.getSchema(), "Sales");

//create a default olap provider
DefaultOlapProvider provider = new DefaultOlapProvider(dataSource, cube);

//create a pivot table
PivotTable pivotTable = new OlapPivotTable(provider);

Pivoting olap data 27

© 2012 Citra Technologies

//create an OlapAssistant
OlapAssistant assist = new OlapAssistant(pivotTable, provider);

//create an OlapCubePanel
OlapCubePanel cubePanel = new OlapCubePanel(provider);

//create an OlapFilterPanel
OlapFilterPanel filterPanel = new OlapFilterPanel(provider);

//add header dnd support to pivot table
HeaderDndSupport hdnd = new HeaderDndSupport(

pivotTable.getPivotTableHeader(), provider);

5.6 OlapDataModel

The default PivotDataModel for olap is OlapDataModel. Its row and column areas are
constructed and maintained by an OlapProvider, which also stores and retrieves the data
values. In order to create an OlapDataModel, only the OlapProvider needs to be supplied:

//create an olap provider from a datasource and cube
OlapProvider provider = new DefaultOlapProvider(dataSource, salesCube);

//create the OlapDataModel
OlapDataModel dataModel = new OlapDataModel();

5.7 Appearance

The appearance of the pivot table is easily customized. Citra Pivot includes a specialized
TableCellRenderer, named OlapCellRenderer, which is suitable for rendering the cells in the
data area of the table. OlapCellRenderer uses the value or the formatted value of an OlapCell
as the table cells' text. It also delegates the rendering to the default renderer for the class of the
value being returned. In addition, the style of all three areas of the pivot table, can be further
improved with a DefaultOlapStyleModel, a PivotStyleModel based on OlapCells. Please see
the javadoc for more information.

5.8 OlapPivotTable

OlapPivotTable is a PivotTable subclass suitable for olap data. It installs a TableCellRenderer
and a PivotStyleModel for olap cells, OlapCellRenderer and DefaultOlapStyleModel
respectively. An OlapPivotTable can be constructed given an OlapProvider:

public OlapPivotTable(OlapProvider provider)

Example: Creating an OlapPivotTable

Citra Pivot Developer's Manual28

© 2012 Citra Technologies

Given a DataSource:

//get the sales cube
OlapCube cube = OlapUtils.findCubeByName(dataSource.getSchema(), "Sales");

//create olap provider
DefaultOlapProvider provider = new DefaultOlapProvider(dataSource, cube);

//create the table
OlapPivotTable table = new OlapPivotTable(provider);

//add olap assistant's functionality
OlapAssistant assist = new OlapAssistant(table, provider);

//apply dnd support to header
HeaderDndSupport hdnd = new HeaderDndSupport(table.getPivotTableHeader(), provider);

//create filter panel
JPanel filterPanel = new OlapFilterPanel(provider);

//create cube browser panel
JPanel cubePanel = new OlapCubePanel(provider);

Pivoting olap data 29

© 2012 Citra Technologies

6 XML/A compatibility

Citra Pivot allows connectivity to OLAP servers that support the XML/A specification.
Connections are established with a 3rd party driver, olap4j. Olap4j has been successfully
tested with Pentaho Analysis (Mondrian server), Microsoft SQL Server Analysis Services,
Palo and SAP BW. For more information on olap4j, please follow the link: http://www.
olap4j.org

The DataSource that connects to OLAP servers using the olap4j driver, is Olap4jDataSource
, found in the com.citra.pivot.olap4j package. Developers do not have to be familiar with
olap4j, minimal knowledge is only needed in order to create an olap4j connection, and pass it
as argument to the sole Olap4jDataSource constructor.

6.1 Creating an olap4j connection

Before constructing an Olap4jDataSource, an olap4j connection needs to be created. The
olap4j connection is represented by a org.olap4j.OlapConnection object. At the time of
writing, there are two olap4j drivers available for connecting to OLAP servers with XML/A.
The first is the generic XML/A driver, that resides in the org.olap4j.driver.xmla package.
The second is the mondrian driver, applicable only for Mondrian servers (http://mondrian.
pentaho.com). In order to create the OlapConnection, the driver needs to be loaded with a call
to the Class.forName(driverClassString) method, with a subsequent call to
DriverManager.getConnection(connectionString), which will yield a java.sql.Connection
instance. Usually, the OLAP server provider will supply the correct connection string to use.
Next, the connection needs to be unwrapped and the OlapConnection instance is retrieved.
Please find some connection examples for common OLAP servers below.

Example 1: Connection to Mondrian server using generic olap4j driver

//load the driver
Class.forName("org.olap4j.driver.xmla.XmlaOlap4jDriver");

//create sql connection
java.sql.Connection connection = DriverManager.getConnection(

"jdbc:xmla:Server=http://localhost:8080/mondrian/xmla;
Catalog=FoodMart;");

//unwrap connection
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = (OlapConnection) wrapper.unwrap(OlapConnection.class);

Example 2: Connection to Mondrian server using mondrian driver

//load the driver
Class.forName("mondrian.olap4j.MondrianOlap4jDriver");

http://www.olap4j.org
http://www.olap4j.org
http://mondrian.pentaho.com
http://mondrian.pentaho.com

Citra Pivot Developer's Manual30

© 2012 Citra Technologies

//create sql connection
java.sql.Connection connection = DriverManager.getConnection(

"jdbc:mondrian:Jdbc=jdbc:odbc:MondrianFoodMart;
Catalog=c:\\mondrian\\FoodMart.xml;");

//unwrap connection
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = (OlapConnection) wrapper.unwrap(OlapConnection.class);

Example 3: Connection to Microsoft SQL Server Analysis Services using generic olap4j
driver

//load the driver
Class.forName("org.olap4j.driver.xmla.XmlaOlap4jDriver");

//create sql connection
OlapConnection connection = (OlapConnection) DriverManager.getConnection(

"jdbc:xmla:Server=http://localhost/olap/msmdpump.dll;");

//unwrap connection
OlapWrapper wrapper = (OlapWrapper) connection;
OlapConnection olapConnection = (OlapConnection) wrapper.unwrap(OlapConnection.class);

Notes for the examples above:

-In example 1, the j2ee server (e.g. tomcat) that hosts Mondrian, listens at port 8080.
-In example 2, an ODBC data source named MondrianFoodMart needs to created beforehand.
Please see Mondrian's documentation for more information.
-In example 3, the SQL Server listens at port 80.

6.2 Library dependencies

While the generic olap4j driver is included in the Citra Pivot distribution, the mondrian driver
is not. The mondrian driver should be downloaded separately from Pentaho, if developers
wish to use this instead. In order to use the generic olap4j driver, the following files, residing
in the /lib/ folder, need to be added to the classpath:

-olap4j-1.0.1.500.jar: olap4j's core API and driver specification
-olap4j-xmla-1.0.1.500.jar: olap4j's driver implementation for XML/A data sources
-javacup.jar: java parser required by olap4j driver
-xercesImpl.jar: xml parser required by olap4j driver

Note that depending on the mondrian driver version used, additional files will need to be
added to the classpath. Please refer to the Mondrian server documentation for more
information.

XML/A compatibility 31

© 2012 Citra Technologies

6.3 Olap4jDataSource

After the OlapConnection has been created, an Olap4jDataSource can be constructed with the
connection as argument. Namely:

Olap4jDataSource dataSource = new Olap4jDataSource(olapConnection);

The datasource can then be used for querying and pivoting. The original OlapConnection can
also be retrieved with the method:

public OlapConnection getOlap4jConnection()

In addition to the queries performed with the Citra Pivot API, the olap4j API can also be used
to make queries in the mdx format, via the OlapConnection. For example:

OlapStatement statement = olapConnection.createStatement();

CellSet cellSet =
 statement.executeOlapQuery(
 "SELECT {[Measures].[Unit Sales]} ON COLUMNS,\n"
 + " {[Product].Members} ON ROWS\n"
 + "FROM [Sales]");

Please refer to the olap4j documentation for more information on mdx queries using the
olap4j API.

Citra Pivot Developer's Manual32

© 2012 Citra Technologies

7 TableDataSource

TableDataSource is a in-memory DataSource implementation that creates an olap cube from
a two-dimensional data model. The input data model is a javax.swing.table.TableModel,
with which Java Swing developers are already familiar. The TableModel may be created from
a variety of sources, such as from an SQL database or a file (csv, xml etc).

In a TableDatasource, the entire schema, including cubes, hierarchies, levels and measures
need to be created programmatically. The framework contains objects such as TableSchema,
TableCube, TableDimension, TableHierarchy, TableLevel, TableMeasure,
TableMember, each referring to the corresponding olap metadata. The schema is created by
calling appropriate methods and constructors of these objects.

Once a schema has been defined, the datasource can be compiled, so that it becomes available
for querying, as well as for pivoting on a PivotTable. All data resides in memory, however
compiled datasources may be serialized to an ObjectOutputStream, and saved to a file, so that
they can be loaded at a later time. TableDataSource also supports incremental data loading,
which can be very useful for large data quantities.

The structure of an olap hierarchy is created with the use of a TableContext, which also
defines the captions and descriptions of its members for a given Locale.

The OlapMeasure representation in the TableDataSource framework is a TableMeasure.
Measures are distinguished in two types, StandardTableMeasure and
DerivedTableMeasure. The first does not require another measure for its definition and
evaluation, while the second does. Measures are evaluated with a TableAggregator,
StandardMeasureAggregators are used for StandardTableMeasures, while
DerivedMeasureAggregators for DerivedTableMeasures.

TableQuery and TableTuple are used to make direct queries to the datasource, and are also
employed when evaluating measures by TableAggregators.

Finally, the measure values retrieved from the datasource are formatted with the use of a
TableFormatter.

Developers wishing to use TableDataSource should first familiarize themselves with the
notions of TableContext and TableAggregator that will be described next.

7.1 TableContext

A TableContext is specified when creating a TableLevel. It is responsible for creating the
level members, and therefore the whole hierarchy structure.

Given that the input model is a two dimensional table, TableContext will extract member
values from each row of the table. This is achieved with the extractMemberValue(List row)

TableDataSource 33

© 2012 Citra Technologies

method. The member values that were extracted are then compared to each other in the
compareMemberValues(Object memberValue1, Object memberValue2) method. This
method returns an integer as is the case with java.util.Comparator, that determines the
comparison result and also the relative location of the members to each other. The member
name, description and caption are also retrieved with the getName(Object memberValue,
List row), getDescription(Object memberValue, List row, Locale locale) and
getCaption(Object memberValue, List row, Locale locale) methods respectively.

There exist several TableContexts, that reside in the com.citra.pivot.table.context package.
Usually, a SingleColumnContext will be used for most purposes. This context extracts
member values, as well as names, captions and descriptions from a single column in the data
model. For creating an 'all' member in a hierarchy, a SingleGroupContext can be used. Other
contexts in the package deal with dates, and they are:

YearContext: for years
QuarterContext: for quarters
MonthContext: for months
WeekContext: for weeks
DayContext: for days

Please refer to the javadoc documentation for more information on these objects.

7.2 TableAggregator

TableAggregators are used for aggregating data and are an essential part of every measure.
There are two types of aggregators, StandardMeasureAggregator for standard measures and
DerivedMeasureAggregator for derived ones. All three are interfaces, concrete
implementations of which are found in the com.citra.pivot.table.aggregator package. This
package also contains a number of commonly used functions, such as sum, max, min, average
etc, encapsulated in the Functions class. Developers may create and use their own
TableAggregators or subclass existing ones.

7.2.1 StandardMeasureAggregator

Aggregation for a standard measure is a two-step process. First, we need to know the
members (usually the children members) that the current aggregated member depends on.
This is achieved with the getAggregatedMembers(TableMember currentMember,
TableConnection connection, TableMeasure measure) method. Next, the aggregated value
is calculated with the getAggregateValue(List queries, TableTuple query,
TableConnection connection, TableMeasure measure) method. The first list argument
(queries) passed to that method, contains the aggregated values of its dependent members.

For example, in a time hierarchy with a year and a quarter level, the aggregated members of
the "1997" year member are its quarter members, i.e. “Q1-1997”, “Q2-1997”, “Q3-1997” and
“Q4-1997”, which are returned from the getAggregatedMembers method. When summing,

Citra Pivot Developer's Manual34

© 2012 Citra Technologies

the getAggregateValue method sums over all quarter member values passed as argument to
it.

The com.citra.pivot.table.aggregator package contains most commonly used aggregators. For
example:

SumAggregator: used for summation
AvgAggregator: used for averaging
MaxAggregator: produces aggregates that are the maximum value
MinAggregator: produces aggregates that are the minimum value
ScaledSumAggregator: sums over values with a weight to each value
FirstValueAggregator: selects the first non-value

Please refer to the Citra Pivot javadoc for a complete list.

7.2.2 DerivedMeasureAggregator

DerivedMeasureAggregators are used for calculating aggregated values for a derived measure.
The only method defined is aggregate(TableQuery query, TableConnection connection,
TableMeasure measure, TableMeasure inputMeasure), which depends on a single query,
instead of a list, like is the case in a StandardMeasureAggregator. Typically, a
DerivedMeasureAggregator produces aggregate values based on a standard measure, however
it can also be based on a derived one.

At the time of writing of this manual, there are three DerivedMeasureAggregators in the
com.citra.pivot.table.aggregator package. These are:

RankAggregator: a ranking for a given measure in the context of a dimension
IndexAggregator: the ratio of the value defined by a list of members to that of another
measure
MovingTotalAggregator: a moving total aggregation of a given measure in the context of a
dimension

7.3 Defining the schema

A schema can be easily created using simple public API methods. Usually, an olap schema is
composed of a number of cubes. An olap cube consists of a number of dimensions and
measures. An olap dimension itself consists of a number of hierarchies. However, because of
the fact that TableDataSource keeps all data in memory, and because of memory limitations,
the number of cubes and hierarchies per dimension are currently restricted to one.

In order to create a schema, we need to define the dimensions, hierarchies, levels and
measures. This process will be described in the following pages.

TableDataSource 35

© 2012 Citra Technologies

7.3.1 TableSchema

TableSchema has methods for adding and removing cubes and dimensions to itself. In order
to create a schema, we first need to give it a name. Cubes and dimensions that are created
from a schema, are automatically added to it.

Example: Creating a TableSchema, adding/removing dimensions

//create a schema named e-shop
TableSchema schema = new TableSchema("e-shop");

//create a dimension named products
TableDimension productsDim = schema.createDimension(“Products”);

//create a cube named sales
TableCube salesCube = schema.createCube(“Sales”);

//remove the products dimension
schema.removeDimension(productsDim);

//remove the sales cube
schema.removeCube(salesCube);

7.3.2 TableCube

TableCube is a dynamically created OlapCube. It has methods for creating measures, both
standard and derived. Dimensions and supported locales may also be added to the cube.

Standard measures are calculated from values that originate in the input TableModel, typically
from a single column. These are called leaf values, and are the starting point for the measure
aggregation. TableDataSource needs to know how to retrieve and calculate these leaf values.
For this purpose, a TableLeafAggregator is used. The default leaf aggregator is
DefaultTableLeafAggregator, which takes data from a single column, summing over the
found values. After the leaf values are calculated, the remaining aggregations are performed
with StandardMeasureAggregators. For a more detailed description of standard measures, see
the chapter on TableMeasure. There are several ways to create a standard measure, the
simpler of which is to supply the measure's name, java class type and the values column in the
TableModel. For a complete measure definition, the name, java class type, olap type,
TableLeafAggregator and StandardMeasureAggregator should be given.

Derived measures depend on another measure, typically a standard one, however a derived
measure can also be used. Instead of supplying a StandardMeasureAggregator, derived
measures use a DerivedMeasureAggregator.

Example: Creating measures (standard and derived)

Having cube as a TableCube previously created from a TableSchema:

Citra Pivot Developer's Manual36

© 2012 Citra Technologies

//create a sales measure using sum aggregator
TableMeasure sales = cube.createMeasure("Net Sales", Double.class, salesColumn),

Aggregators.getSum());

//create a sales measure using max aggregator
TableMeasure maxSales = cube.createMeasure("Max Sales", Double.class, salesColumn),

Aggregators.getMax());

//create a derived measure for a moving total of the sales measure over the time dimension
DerivedTableMeasure moving = cube.createDerivedMeasure("Moving", Double.class,

new MovingTotalAggregator(timeDim));

7.3.3 TableDimension

TableDimension is an OlapDimension that is part of a TableSchema and of a TableCube.
TableDimension has methods for creating and removing hierarchies.

Example: Creating/removing hierarchies

Having productsDim as a TableDimension previously created from a TableSchema:

//create a hierarchy named products
TableHierarchy productsHier = productsDim.createHierarchy(“Products”);

//remove the products hierarchy
productsDim.removeHierarchy(productsHier);

7.3.4 TableHierarchy

TableHierarchy is an OlapHierarchy that defines methods for adding and removing
TableLevels. The default member can also be assigned. A TableLevel is added by supplying
its name and TableContext. A column index in the TableModel may also be given instead of
the TableContext, in which case, a SingleColumnContext is created having the column index
as argument to its constructor.

Example: Creating/removing levels

Having productsHier and timeHier as hierarchies previously created from a TableDimension:

//create a level named categories
TableLevel categoryLevel = productsHier.createLevel(“Categories”, categoryColumn);

//remove the category level
productsHier.removeLevel(categoryLevel);

//add All Years level
timeHier.createLevel("All Years", new SingleGroupContext("All Years"));

TableDataSource 37

© 2012 Citra Technologies

//add Years level
TableLevel yearLevel = timeHier.createLevel(“Year”, new YearContext(dateColumn));

//add Quarter level
timeHier.createLevel ("Quarter", new QuarterContext(dateColumn));

//add Month level
timeHier.createLevel ("Month", new MonthContext(dateColumn));

7.3.5 TableLevel

TableLevel represents an OlapLevel that is created from a TableHierarchy. Its context may be
assigned and retrieved with suitable methods. More specifically:

public TableContext getContext(): retrieve the current context
public void setContext(TableContext context): assign the context

7.3.6 TableMeasure

A TableMeasure is distinguished in two types, StandardTableMeasure and
DerivedTableMeasure. The first is calculated from values that directly originate in the input
TableModel, while the second is "derived" from the values of another measure. Additionally,
data in standard measures are aggregated with a StandardMeasureAggregator, while derived
ones with a DerivedMeasureAggregator. However more importantly, there is another critical
distinction between a standard and a derived measure. A standard measure is aggregated over
each dimension in a cube, one dimension at a time, with an aggregator that may be different
for each dimension. The order with which dimensions will be aggregated is important, and it
can produce different results. For example, in a cube with two dimensions, both of which use
an average aggregator, the order matters. Derived measures, on the other hand, have only one
aggregator and, therefore, there is no notion of order.

In the TableCube description above, it was shown how to create a standard measure.
TableCube's createMeasure method, accepts only one StandardMeasureAggregator (when
there is no argument for an aggregator, a SumAggregator is used). The aggregator specified in
the create method, will be used for all the cube's dimensions in an arbitrary order. However,
StandardTableMeasure includes methods for assigning different aggregators to dimensions
and also for changing the order in which the aggregators will be applied. In particular, this is
accomplished with the following StandardTableMeasure methods:

public void setAggregator(StandardMeasureAggregator aggregator,
TableDimension dimension)

public void setAggregator(StandardMeasureAggregator aggregator,
TableDimension dimension, int priority)

public void setPriority(TableDimension dimension, int priority)

Citra Pivot Developer's Manual38

© 2012 Citra Technologies

The priority argument specifies the aggregation order. Dimensions with higher priority will be
processed before others, while those with the same priority, will be processed in a random
order.

Example: Creating a standard "inventory" measure

//create a standard measure with a SumAggregator (no-aggregator argument)
//remainingProductsColumn contains the number of items remaining in stock after each order

StandardTableMeasure inventory = cube.createMeasure("Inventory", Integer.class,
remainingProductsColumn);

//set a last value aggregator over the time dimension
inventory.setAggregator(Aggregators.getLast(), timeDim);

Derived measures are aggregated with a DerivedMeasureAggregator, which usually contains
parameters that dictate the aggregation process. For example, in MovingTotalAggregator, the
dimension over which the moving total will be evaluated is defined, as well as the offsets to
lead or the lag the current member under evaluation.

Example: Creating a derived measure

//create a derived measure for a moving total of the sales measure over the time dimension
DerivedTableMeasure moving = cube.createDerivedMeasure("Moving", Double.class,

new MovingTotalAggregator(timeDim));

7.3.7 Example: Creating a schema

Having model as a DefaultTableModel:

//start with creating a schema called sales
TableSchema schema = new TableSchema("sales");

//create products dimension
TableDimension productsDim = schema.createDimension("Products");

//create the default hierarchy for the products dimension
TableHierarchy productsHier = productsDim.createHierarchy("Products");

//add levels to the products hierarchy
productsHier.createLevel("All Products", new SingleGroupContext("All Products"));
productsHier.createLevel("Categories", model.findColumn("Category"));
productsHier.createLevel("Products", model.findColumn("Product"));

//create time dimension
TableDimension timeDim = schema.createDimension("Time");

//create the default hierarchy for the time dimension
TableHierarchy timeHier = timeDim.createHierarchy("Time");

TableDataSource 39

© 2012 Citra Technologies

//add levels to the time hierarchy
timeHier.createLevel("All Years", new SingleGroupContext("All Years"));
timeHier.createLevel("Year", new YearContext(model.findColumn("Order Date")));
timeHier.createLevel("Quarter", new QuarterContext(model.findColumn("Order Date")));
timeHier.createLevel("Month", new MonthContext(model.findColumn("Order Date")));

//create customer dimension
TableDimension customerDim = schema.createDimension("Customer");

//create the default hierarchy for the customer dimension
TableHierarchy customerHier = customerDim.createHierarchy("Customer");

//add levels to the customer hierarchy
customerHier.createLevel("All Customers", new SingleGroupContext("All Customers"));
customerHier.createLevel("Customer Country", model.findColumn("Customer Country"));
customerHier.createLevel("Customer City", model.findColumn("Customer City"));
customerHier.createLevel("Customer", model.findColumn("Customer"));

//create a cube called sales
TableCube cube = schema.createCube("sales");

//add dimensions to the cube
cube.addDimension(productsDim);
cube.addDimension(timeDim);
cube.addDimension(customerDim);

//find the column in the model representing the "Net Sales" values
int sales = model.findColumn("Net Sales");

//create some measures
TableMeasure sales = cube.createMeasure("Net Sales", Double.class, sales,

Aggregators.getSum());

TableMeasure maxSales = cube.createMeasure("Max Sales", Double.class, sales,
Aggregators.getMax());

NormalTableMeasure orders = cube.createMeasure("# of Orders", Integer.class, sales,
Aggregators.getSum());

orders.setLeafAggregator(new DefaultTableLeafAggregator(sales,
Functions.getCountFunction()));

7.4 Creating a TableDataSource

In order to create a TableDataSource, a schema and a TableModel is needed. We already saw
how to create a schema in the previous pages. As for the TableModel, this may originate from
a variety of sources, such as from an SQL database, a file (csv, xml) etc. While any
TableModel would do, our product, Citra Table, that deals exclusively with tables in Java,
contains a number of TableModel subclasses, such as ObjectTableModel and

Citra Pivot Developer's Manual40

© 2012 Citra Technologies

DefaultDatabaseTableModel, that facilitate the model creation.

Once the schema and TableModel have been constructed, we can proceed with creating the
TableDataSource:

//create the TableDataSource
TableDataSource dataSource = new TableDataSource(schema, dataModel);

Next, the datasource needs to be compiled in order to become available for querying and
pivoting:

//compile the data source
try {

dataSource.compile();
} catch (DataSourceException e) {

e.printStackTrace();
}

Note that a TableDataSource may also be created using the no-argument constructor, and the
schema and TableModel assigned to it at a later time. For example:

//create the TableDataSource
TableDataSource dataSource = new TableDataSource();

//assign the schema
dataSource.setSchema(schema);

//assign the model
dataSource.setModel(dataModel);

The datasource still needs to be compiled after the schema and model have been assigned.

During compilation, TableDataSource will discover and create the hierarchies and its
members. The data aggregation that will take place depends on the so-called "pre-compute
mode" that has been assigned. Valid values for a pre-compute mode are:

PRECOMPUTE_NOTHING: no aggregations should be performed
PRECOMPUTE_ALL: all data should be aggregated
PRECOMPUTE_LEAVES: only the leaf members should be aggregated
PRECOMPUTE_TOP: only the first level member values should be aggregated

By default, TableDataSource uses a mode of PRECOMPUTE_TOP. When the pre-compute
mode is other than PRECOMPUTE_ALL, data will be aggregated on demand, according to
the queries being made. Also, after the datasource has been compiled, changing the
pre-compute mode, has no effect what-so-ever: it only applies BEFORE the compilation.

NOTE: Since all data in a TableDataSource resides in memory, memory issues may be a
problem. You might want to increase the maximum memory used by the java application

TableDataSource 41

© 2012 Citra Technologies

using the -Xmx switch. For example:

java -Xmx600m MyApplication

will increase the maximum memory used to 600 megabytes.

7.5 Saving/loading

Discovering a cube's hierarchies as well as data aggregation may be a time-consuming process
(depending on the schema and data), which also takes up a lot of memory resources. For this
reason, TableDataSource supports saving and loading of the schema and associated
aggregates. After compilation, the TableDataSource may be serialized to an
ObjectOutputStream, and piped to a file, so that it can be loaded at a later time. The
datasource will serialize the whole schema, including its cubes, hierarchies and measures, and
whatever data had been aggregated so far. In order to save more data than those that have
already been aggregated, a pre-compute mode may also be specified, such as
PRECOMPUTE_ALL, which will effectively include everything.

Example: Saving to a file the schema and whatever aggregates are evaluated so-far

//create the output stream
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(new File("c:\\mydata.bin")));

//save file to the stream by pre-computing all aggregated values first
dataSource.save(out);

//the above call is the same as: dataSource.save(out, PRECOMPUTE_NOTHING);

//close the stream
out.close();

Example: Saving to a file the schema and all aggregated data

//create the output stream
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(new File("c:\\mydata.bin")));

//save file to the stream by pre-computing all aggregated values first
dataSource.save(out, TableDataSource.PRECOMPUTE_ALL);

//close the stream
out.close();

The output that was serialized using the save method above, may be loaded into the
TableDataSource.

Example: Loading a serialized file to the datasource

Citra Pivot Developer's Manual42

© 2012 Citra Technologies

//create the datasource
TableDataSource dataSource = new TableDataSource();
//create the input stream

ObjectInputStream in = new ObjectInputStream(
new FileInputStream(new File("c:\\mydata.bin")));

//load the datasource
dataSource.load(in);

//close the stream
in.close();

7.6 Incremental aggregation

TableDataSource also supports incremental loading of data. This may prove extremely useful
for large data quantities, when memory limitations are present. For example, a TableModel
consisting of 2 billion rows may be impossible to exist in memory, let alone loaded into the
datasource. We could however chunk the model into smaller pieces, and perform incremental
data loading and aggregation. The datasource could then be saved to an external file, so that
the whole process need not be repeated. See below for an example.

Example: Incremental data loading

//create a data source
TableDataSource source = new TableDataSource(schema);

//compile the data source
source.compile();

//get first chunk of data
TableModel data1 = getModel(0, 10000); //user-defined method for retrieving first 10,000 rows

//add the model to the datasource
source.setModel(data1, false); //a value of 'false' can be omitted here since it is the first batch

//get second chunk of data
TableModel data2 = getModel(10000, 20000); //user-defined method for retrieving next 10,000
rows

//add the model to the datasource
source.setModel(data2, false); //a value of 'false' is needed so that data can be added instead of
replaced

//get second chunk of data
TableModel data3 = getModel(20000, 30000); //user-defined method for retrieving next 10,000
rows

TableDataSource 43

© 2012 Citra Technologies

//add the model to the datasource
source.setModel(data3, false); //a value of 'false' is needed so that data can be added instead of
replaced

//...and so on

7.7 Making queries

Although data are retrieved from a datasource's connection with execute(OlapSelection
selection), values may also be acquired directly from the TableDataSource, by calling the
getValue(TableMeasure measure, TableQuery query) method. The input to the getValue
method should completely identify an OlapCell. TableQuery is a placeholder for a TableTuple
, which, in turn, contains the members that define the olap cell.

Example: Making a query

Having source as our TableDataSource:

//create a new connection - the connection will be used to discover the members below
Connection connection = source.createConnection();

//retrieve members by specifying their full path
OlapMember m1997 = OlapUtils.retrieveMember(

new String[] {"Time", "Time", "1997"}, connection);

OlapMember mBev = OlapUtils.retrieveMember(
new String[] {"Products", "Products", "Beverages"}, connection);

//close the connection
connection.close();

//create a list to hold the query members
List members = new ArrayList();

//add the members to the list
members.add(m1997);
members.add(mBev);

//construct the TableTuple
TableTuple tuple = new TableTuple(members);

//construct the query
TableQuery query = new TableQuery(tuple);

//fetch the sales measure
OlapCube salesCube = OlapUtils.findCubeByName(source.getSchema(), "Sales");
TableMeasure sales = OlapUtils.findMeasureByName(salesCube, "Net Sales");

//retrieve the value

Citra Pivot Developer's Manual44

© 2012 Citra Technologies

Object value = source.getValue(sales, query);

7.8 Formatting values

Values that are returned from a query need to be formatted to a string, so that they can be
encapsulated in an OlapCell. In TableDataSource, this is achieved with a TableFormatter.
TableFormatter has only one method that defines the way a given value is transformed into a
String:

public String format(Object value, TableMeasure measure, Locale locale)

By default, TableDataSource uses a DefaultTableFormatter, that returns string representations
of number values using various number formats. A new formatter may be assigned with the
setTableFormatter(TableFormatter tableFormatter) method.

TableDataSource 45

© 2012 Citra Technologies

8 Remote Operations

Olap operations are sometimes time consuming. As a result, the UI freezes until these
operations are completed. In order to get around this problem, a RemoteOlapModel can be
used. RemoteOlapModel will asynchronously retrieve the values from an OlapDataModel.
These values are retrieved from a separate thread outside the Event Dispatch Thread (EDT),
thus ensuring that the pivot table does not freeze while data operations take place.

While RemoteOlapModel may work on its own, there are also a few components that show
the underlying data retrieval activity. These are RemoteOlapPanel and RemoteOlapStyle. A
value that has not been fetched yet is translated into a RemotePendingValue. Finally,
RemoteOlapModel uses a RemoteOlapListener to indicate when it will start or stop
retrieving the underlying data, through a RemoteOlapEvent.

8.1 RemoteOlapPanel

RemoteOlapPanel is a JPanel that shows the current status of a RemoteOlapModel. It contains
a label and an indicator that update themselves according to the data retrieval activity. The
remote panel will receive an event each time an olap operation is started or stopped and its
text and indicator will be updated accordingly.

The indicator is a RemotePendingIndicator, a component that sweeps a circular path, while
data is being retrieved.

8.2 RemoteOlapStyle

RemoteOlapStyle paints pending cells with a background color. It will be applied only if the
value of a cell is an instance of RemotePendingValue. In order to take effect, the style should
be added to pivot table's style model. By default, the style uses a yellow background color.
The background color can be assigned with the method:

public void setPendingBackgroundColor(Color pendingBackgroundColor)

The background color is also determined with the method:

public Color getPendingBackgroundColor()

8.3 RemotePendingValue

RemotePendingValue is an interface, extending com.citra.pivot.olap.data.OlapCell, that
represents values that have not yet been retrieved by RemoteOlapModel. Its default
implementation in this package is DefaultRemotePendingValue, with a text value equal to
an empty string.

Citra Pivot Developer's Manual46

© 2012 Citra Technologies

8.4 RemoteOlapListener

RemoteOlapListener is a listener that is notified each time RemoteOlapModel starts or stops
querying the underlying olap data model. RemoteOlapModel will fire a suitable
RemoteOlapEvent. RemoteOlapListener has one notifying method:

public void remoteActionPerformed(RemoteOlapEvent e)

Also, RemoteOlapEvent identifies the affected cell and type of remote operation which will
be propagated to the listeners:

public TreePath[] getRowPaths() : the row path part to retrieve or that was retrieved
public TreePath[] getColumnPaths() : the column path part to retrieve or that was retrieved
public int getType() : either RemoteOlapEvent.STARTED or RemoteOlapEvent.STOPPED,
indicating a start or stop activity respectively

8.5 Usage

Example: How to use RemoteOlapModel

Having olapDataModel as the underlying model:

//create a RemoteOlapModel
RemoteOlapModel remoteModel = new RemoteOlapModel(olapDataModel);

//create pivot model
PivotTableModel pivotModel = new DefaultPivotTableModel(remoteModel);

//create pivot table
PivotTable pivotTable = new OlapPivotTable(pivotModel);

//add remote olap style to pivot table
RemoteOlapStyle style = new RemoteOlapStyle();
pivotTable.getStyleModel().addStyle(style);

//create remote olap panel – this panel can be added anywhere in the application
RemoteOlapPanel remotePanel = new RemoteOlapPanel();

//add the panel as listener to the remote olap model
remoteModel.addRemoteListener(remotePanel);

	Preface
	Pivot table
	Row and column areas
	Data area
	PivotTableModel
	Appearance
	Pivot components
	Localization

	Olap Metadata
	OlapObject
	OlapSchema
	OlapCube
	OlapDimension
	OlapHierarchy
	OlapLevel
	OlapMember
	OlapMeasure
	OlapType

	Interfacing with olap data
	DataSource
	Connection
	OlapSelection
	CustomSelection
	OlapTuple
	OlapSet
	OlapCell
	Cursors
	OlapCursor
	TupleCursor
	ValueCursor
	TabularCursor

	AxisOlapSet
	OlapCellSet
	TabularSet
	Exceptions

	Pivoting olap data
	OlapTableModel
	Olap adapters
	OlapDefinition
	OlapProvider
	DefaultOlapProvider
	Pivoting
	Sorting
	Filtering
	Drilling
	Top/Bottom
	Root members
	Subtotals
	Grand totals
	Swapping axes
	Empty/Non-empty cells
	Visual Totals

	Olap components
	OlapDataModel
	Appearance
	OlapPivotTable

	XML/A compatibility
	Creating an olap4j connection
	Library dependencies
	Olap4jDataSource

	TableDataSource
	TableContext
	TableAggregator
	StandardMeasureAggregator
	DerivedMeasureAggregator

	Defining the schema
	TableSchema
	TableCube
	TableDimension
	TableHierarchy
	TableLevel
	TableMeasure
	Example: Creating a schema

	Creating a TableDataSource
	Saving/loading
	Incremental aggregation
	Making queries
	Formatting values

	Remote Operations
	RemoteOlapPanel
	RemoteOlapStyle
	RemotePendingValue
	RemoteOlapListener
	Usage

